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VIBRATION-TRANSLATION  ENERGY  TRANSFER  IN  VIBRATIONALLY 

EXCITED  DIATOMIC  MOLECULES 

Robert  Lawrence  McKenzie 

Ames Research  Center 

CHAPTER I 

INTRODUCTION 

1.1 New  Aspects  in  Modern  Vibrational  Relaxation  Processes 

While  the  collisional  excitation  of  vibrations  in  diatomic  molecules  has 

been a frequently  studied  topic  for  decades, 1-4 an  increasing  interest  in 

processes  that  depend  on  the  details  of  energy  transfer  to  specific  vibra- 

tional  states  has  put  new  demands  on  the  analysis  of  such  collisions.  The 

following  comparison  of  the  early  class  of  relaxation  processes  with  those 

introduced  in  the  past  decade  demonstrates  the  new  features  required  in a 

theoretical  model  of  vibrational  energy  transfer. 

Early  studies  of  vibrational  relaxation  in  gases  were  concerned  mainly 

with  the  influence  of  vibrational  energy  transfer  on  the  bulk  thermodynamic 

properties  during  the  relaxation  process.  Phenomena  such  as  the  absorption 

and  dispersion  of  ultrasonic  waves5r6  or  the  vibrational  excitation  behind 

shock  waves7r8  were  described  analytically  in  terms  of  an  effective  "relaxa- 

tion  time," T, that  characterized  the  rate  at  which  the  collisional  exchange 

of  vibrational  and  translational  energies  brought  the  total  energy  in  vibra- 

tions  toward  equilibrium.  Only a single  relaxation  equation  was  then 

necessary,  in  the  simple  form: 

, 
S 

*Submitted  to  York  University  as  partial  fulfillment  of  Ph.D.,  April 1976. 
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dev e; - 
” 

dt 
- 

T 

where e, is  the  total  specific  energy  in  vibrations  and  e$  is  the  corre- 

sponding  value  at  thermodynamic  equilibrium  with  the  local  state of the  gas 

(see  Appendix  A  for  a  list of symbols).  The  factors  controlling  these  early 

processes  are  evident  in  the  derivation  leading  to  equation (1.1) (e.g., 

Vincenti  and  Kruger,  Ch. 7 ) .  The  gas  is  considered  to  be  an  admixture  of 

harmonic  oscillators  in  a  thermal  heat  bath  of  structureless  inert  atoms.  The 

harmonic  oscillator  quantal  properties  allow  only  single-quantum  transitions 

and  lead  to  the  Landau-Teller4  relationship  describing  the  quantum  number 

dependence of rate  coefficients: 

kv, v- 1 = vk 
190 

denotes  the  rate  coefficient  for  transitions  from  oscillator 

(1.2) 

v-1 induced  by  oscillator-atom  collisions. A set  of  simplified 

rate  equations  describing  the  detailed  kinetics  can  then  be  collected  into  a 

simple  equation  from  which  the  parameter, T, emerges  in  the  form 

T = [(l - e -hw/kT >kl, ,-p/ml-’  (1.3) 

where w is  the  fundamental  oscillator  frequency  and T, p,  and  m  are  the 

kinetic  temperature,  density,  and  average  molecular  mass  of  the  gas  mixture, 

respectively.  Equations (1.1) and  (1.3)  combine  to  illustrate  the  principal 

common  feature of processes  described  this  way;  viz,  the  only  collision  param- 

eter  required  is  the  rate  of  single-quantum  transitions  to  the  ground  state. 

The  description is independent of the  population  distributions  among  higher 

vibrational  states  and no assumptions  regarding  their  definition  is  made. In  

a  more  detailed  account  of  the  kinetics  that  includes  the  exchange  of  vibra- 

tional  energy  between  oscillators,  Montroll  and  Shulerg  show  that  a  population 

2 



distribution  of  harmonic  oscillator  states  rapidly  recovers  from  an  arbitrary 

distortion  and  achieves a Boltzmann  distribution  described  by  some  nonequilib- 

rium  "vibrational  temperature."  The  recovery  occurs  in a time  period  small 

compared  to T, causing  the  subsequent  relaxation  to  proceed  through a contin- 

uous  sequence of Boltzmann  distributions.  This  result  further  reduced  any 

concern  for  the  details  of  energy  transfer  to  excited  vibrational  states 

beyond  the  description  given  by  equation  (1.2). 

As experimental  studies  of  vibrational  relaxation  became  more  detailed, 

the  kinetic  models  based  on  harmonic  oscillator  properties  appeared  less 

capable  of  describing  the  observations.  Motivated  by  some  large  discrepancies 
- .  . .  

between  theory  and  experiment  in  nonequilibrium  supersonic  expansions, 

Treanor,  Rich,  and  Rehm"  recently  showed  that  the small anharmonicity  of  most 

diatomic  molecules  was  sufficient  to  generate  non-Boltzmann  distributions 

among  upper  vibrational  states  during  some  relaxation  processes.  The  impor- 

tance  of  oscillator  anharmonicity  in  the  vibrational  kinetics  has  since  been 

amplified  by  the  introduction of infrared  gas  lasers, 11-15 where  the  effects 

of  anharmonicity  are  essential to produce  the  necessary  population  inversions 

among  vibration-rotation  states. l3 Some  recent  proposals  using  lasers to 

selectively  excite  specific  vibrational  states  for  photochemical  or  isotope 

separation  experiments  will  also  be  strongly  influenced  by  the  effects of 

anharmonicity.  These  modern  applications  of  vibrational  nonequilibrium  con- 

stitute a new  class  of  relaxation  processes  that  depend  on  the  degree of dis- 

tortion  from a Boltzmann  population  distribution.  Their  analysis  requires a 

detailed  solution  to  the  set  of  relaxation  equations - one  for  each  contribut- 

ing  vibrational  state - that  describes  the  change  in  number  density,  Nv,  of 

each  state  v. A general  form  of  the  relaxation  equations  can  be  written  as 

3 



" = c c kv',v i v' 
dNV 

dt N N  
i v' 

where Ni denotes  the  number  density  of  all  species  or  states i and 

is  the  rate  coefficient  for  transitions  from  state v'  to v. Equation (1.2) 

is  not  an  accurate  description  of  the  quantum  number  dependence of k,' 

when  the  oscillator  is  anharmonic,  and  the  selection  rule  allowing  only 

single-quantum  transitions  is  also  invalid.  Thus  the  simplifications  of 

equation (1.4) leading  to  equation (1.1) and  the  concept  of  an  effective 

relaxation  time  given  by  equation  (1.3)  are  no  longer  applicable.  Rate  coeffi- 

cients  for  transitions  from  excited  vibrational  states  are  as  essential  to  the 

analysis  of  such  processes  as klY0 is  and  vibrational  anharmonicity  will  have 

a  major  influence  on  their  values.  Since  this  study  is  concerned  mainly  with 

the  rate  of  energy  transfer  to  excited  states,  oscillator  anharmonicity  is 

therefore  a  basic  feature  to  be  included. 

kvl ,v 

,v 

1.2  Role  of  Vibration-Translation  Energy  Transfer 

In  most  modern  applications  involving  vibrational  nonequilibrium  and 

particularly  in  the  analysis  of  infrared  gas  lasers,  the  collisional  exchange 

of  vibrational  and  translational  energies  must  usually  be  considered  as  one of 

several  paths  for  energy  transfer  to  the  molecular  state  in  question. A s  

equation  (1.2)  indicates,  the  rate  of  vibration-translation  (V-T)  energy 

transfer  increases  with  quantum  number  even  in  the  simplest  model  of  the 

oscillator.  Thus,  the  V-T  process  can  dominate  the  flow  of  energy  from  upper 

vibrational  levels  even  where  it  may  be  insignificant  to  the  kinetics  of  lower 

levels.  In  some  cases,  it  may  provide  the  principal  path  for  vibrational 

energy  loss  from  the  system.  An  essential  feature  of  the  V-T  rates  is  there- 

fore  their  dependence  on  the  initial  state  quantum  number,  particularly  in 
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deexci ta t ion   p rocesses   where  excess vibrational  energy  has  been  produced. 

Unfortunately,   very l i t t l e  quan t i t a t ive   i n fo rma t ion   de f in ing   t he  quantum num- 

ber  dependence  of V-T rates f o r  even the  simplest   diatomic  molecules is 

p r e s e n t l y   a v a i l a b l e  from ei ther   experiment   or   theory.  

Experimental   ground-state  excitation rates have  been  obtained  from mea- 

surements  behind  shock waves16 o r   i n   f l uo rescence   expe r imen t s1 ’   fo r  many yea r s  

by determining  the  value  of  T i n  equation (1.1) t h a t   b e s t   f i t s   t h e   o b s e r v a -  

t i o n s .  However, t h e   d i f f i c u l t y   o f   o b t a i n i n g   e x p e r i m e n t a l  V-T rates f o r  mole- 

cu le s  i n  we l l -de f ined   exc i t ed   v ib ra t iona l  states is ind ica t ed  by t h e   s p a r s i t y  

of  at tempts.  Numerous experimenters  have  recently  measured  the rates of 

v ib ra t ion -v ib ra t ion  (V-V) energy   exchange   be tween  pa i r s   o f   osc i l la tors   in  

exc i t ed  statesl8,lg because   t he   f a s t  V-V t r ans fe r   can   ea s i ly   be  made a dominant 

mechanism; but   to   date ,   only  one  comprehensive set of upper-level V-T rate 

measurements  has  been  reported. l8  Even then,  while  the  experiment w a s  c l e v e r l y  

designed  and  careful ly   analyzed,   the   condi t ions were complex  and t h e  measure- 

ments requi red   subs tan t ia l   cor rec t ion   to   compensa te   for   ex t raneous  modes of 

energy   t ransfer .  

Theore t i ca l   s tud ie s   add res sed   t o   t he   ana lys i s  of i n i t i a l l y   e x c i t e d   o s c i l -  

l a to r s   have   been   s imi l a r ly  sparse. S ince   t he   r e l axa t ion  t i m e ,  T ,  is  deter-  

mined s o l e l y  by t h e  rate of s ingle-quantum  t ransi t ions  to   the  ground s ta te ,  

kl,O, the   usua l   theore t ica l   approach   has   cen tered  on a harmonic   osc i l la tor  

model o f   t h e   m o l e c u l e   i n i t i a l l y   i n   t h e  ground state. The small-amplitude 

o s c i l l a t i o n s   c h a r a c t e r i s t i c  of t h e  ground s ta te  then  a l low a l i n e a r i z e d   i n t e r -  

a c t i o n   p o t e n t i a l   b e t w e e n   t h e   o s c i l l a t o r  and  an i n c i d e n t   p a r t i c l e   t o   b e   u s e d .  

By a s suming   fu r the r   t ha t   t he   pa r t i c l e   t r a j ec to ry  is c o l l i n e a r   w i t h   t h e  molecu- 

l a r  a x i s  and  by adopt ing a semic lass ica l   approximat ion ,   the   l inear ized  
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interaction  makes  possible  an  exact  and  convenient  analytical  solution  for  the 

oscillator  transition  probabilities  for  any  initial  state.  However,  the 

inaccuracy  of  the  harmonic  oscillator  model  has  been  demonstrated  by  Mies20-21 

even  for  .transitions  originating  from  the  ground  state.  Mies  found  that  the 

use of  an  anharmonic  oscillator  potential  introduces  matrix  elements  associated 

with  oscillator  transitions  that  are  no  longer  equal  on  the  diagonal. (A har- 

monic  oscillator  with  an  interaction  linear  in  the  oscillator  coordinate  has 

constant  diagonal  matrix  elements.)  The  nonzero  differences in the  diagonal 

matrix  elements  introduce  additional  phase  differences  between  the  time- 

dependent  oscillator  eigenfunctions  during  a  collision  and  can  lead  to  large 

corrections  to  the  harmonic  oscillator  model.  Because  the  origin  of  these 

corrections  resides  in  the  unperturbed  oscillator  eigenfunctions  (from  which 

the  matrix  elements  are  computed),  their  effects  are  not  always  reproduced  by 

the  popular  practice  of  simply  inserting  oscillator  eigenenergies,  corrected 

for  anharmonicity,  into  a  harmonic  oscillator  theory.  Nevertheless,  in  the 

absence  of  better  analytic  solutions,  such  theoretical  models  are  frequently 

used  to  predict  the  quantum  number  dependence  of  V-T  rates. 11-15 Thus,  a  need 

clearly  exists  for  the  development  of  a  suitable  analytic  solution  containing 

anharmonicity  as  a  fundamental  feature. 

1.3  Purpose  and  Objectives  of  This  Study 

While  the  modern  literature  is  abound  with  comprehensive  and  detailed 

studies  of  the  collisional  excitation  of  diatomic  molecules  in  vibration  and 

rotation  (see  almost  any  recent  issue  of  the  Journal  of  Chemical  Physics), 

vibrational  states  higher  than  the  second  are  rarely  considered.  The  objec- 

tives  are  usually  either  to  examine  improved  techniques  for  calculating  the 

collision  dynamics  or to obtain  a  quantitatively  accurate  estimate  of  the 
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inelastic  cross  sections.  The  collision  models  used  in  the  latter  case  are 

usually  fully  quantum  mechanical  and  hence  are  as  exact  as  the  form of the 

interaction  potential  chosen  for  study.  These  studies  are  clearly a necessary 

step  in  the  understanding  of  molecular  collision  dynamics  since  they  provide 

the  most  precise  test  of  our  ability  to  explain  the  experimental  observations. 

Unfortunately,  the  computational  requirements  to  obtain  such  precision  are 

expensive  and  tend  to  limit  the  scope of such  studies. To a pragmatist  con- 

cerned  with  the  analysis  of a mdern macroscopic  process,  these  studies  of 

microscopic  collision  dynamics  are  seldom  able  to  provide  much  useful  informa- 

tion  about  the  thermally  averaged  rate  coefficients  for  molecules  in  excited 

states.  Furthermore,  even if exact  calculations  were  typically  carried  far 

enough  to  produce  rate  coefficients, a means  of  numerically  reproducing  the 

results  inexpensively  would  be  required  before  they  could  be  conveniently 

applied  in a solution  of  the  macroscopic  rate  equations.  This  study is 

addressed to the  pragmatist  and  to  four  corresponding  objectives. 

The  first  objective is to examine  the  inelastic  collision  dynamics  of 

diatomic  molecules  in  an  arbitrary  initial  state  struck  by a structureless 

atom.  The  purpose  is  to  explore  the  qualitative  features of such  encounters 

and  to  identify  the  parameters  and  physical  features  contributing  most  to  the 

prediction  of  the  associated  energy-transfer  rates.  By  including a complete 

account  of  the  coupling  between  interacting  vibrational  states,  especially  as 

it is amplified  by  anharmonicity,  the  results  provide a basis  for  evaluating 

more  approximate  treatments of the  collision  process  that  may  have  emphasis on 

other'aspects,  such  as  those  with  sufficient  simplifications  to  allow  analytic 

solution or those  including  coupled  rotational  motion. 

7 



A second   ob jec t ive   o f   t h i s   s tudy  is  t o   e v a l u a t e  several a n a l y t i c   c o l l i -  

s ion   mode l s   i n   popu la r   u se   fo r   p red ic t ing   t he  quantum number dependence  of V-T 

rate c o e f f i c i e n t s .  This o b j e c t i v e  is motivated  by  the  importance  of  having  an 

inexpensive  neans  of   generat ing  values   of   kvYV'  when s o l v i n g   t h e   d e t a i l e d  

rate equa t ions   t yp i f i ed  by equat ion (1.4). A c o l l i s i o n  model w i t h   s u f f i c i e n t  

g e n e r a l i t y   t o   b e   a p p l i c a b l e   f o r  a l l  c o n d i t i o n s   o f   i n t e r e s t   i n  modern appl ica-  

t i o n s  w i l l  necessar i ly   requi re   numer ica l   so lu t ion ,   and   the   f i r s t   ob jec t ives  of 

t h i s   s t u d y  are m e t  only  with  such a model. The s o l u t i o n s  are time consuming, 

however,  and  would be   p roh ib i t i ve ly   expens ive   i n  a p r a c t i c a l   a p p l i c a t i o n .  

Consequent ly ,   the   usual   pract ice  i s  t o   o b t a i n  a s imple  analyt ic   approximation 

by in t roducing   suf f ic ien t   assumpt ions   to   decouple   the   in te rac t ions   be tween 

o s c i l l a t o r  states and t o   l i n e a r i z e   t h e   i n t e r a c t i o n   b e t w e e n   t h e   o s c i l l a t o r   a n d  

i ts  c o l l i s i o n   p a r t n e r .  Several such   so lu t ions   have   been   ex t rac ted ,   bu t   they  

a l l  exclude  one  or more proper t ies   o f   the   co l l i s ion   process   tha t   remain  impor- 

t a n t   i n  a general ized model. L i t t l e  de f in i t i on ,   i f   any ,   o f   t he   r ange   o f  

a p p l i c a b i l i t y   o f   t h e s e   a n a l y t i c   s o l u t i o n s   a p p e a r s   i n   t h e   l i t e r a t u r e   i n   o t h e r  

t han   t he  most general  terms. The second  object ive  descr ibed  here  i s  a n   e f f o r t  

t o   d e f i n e  more e x p l i c i t l y   t h e i r   r a n g e  of  a p p l i c a b i l i t y   f o r   p r e d i c t i n g   e x c i t e d -  

s ta te  rate c o e f f i c i e n t s .  

A t h i r d   o b j e c t i v e  of  t h i s   s t u d y  i s  to   eva lua te   the   consequence   of  

several   s impli ' fying  assumptions  regarding  the  equat ions of motion  and  the  col- 

l i s i o n  geometry t h a t  were necessa ry   t o  meet the   p reced ing   ob jec t ives .  A fun- 

damenta l   s impl i f ica t ion   to   the   equat ions   o f   mot ion  is achieved  here  by  adopt- 

ing a semic lass ica l   o r   " impact  parameter'' d e s c r i p t i o n   o f   t h e   c o l l i s i o n  

dynamics. 2 2 - 2 3  The pa th  of t h e   i n c i d e n t   p a r t i c l e  is  o b t a i n e d   c l a s s i c a l l y ,  

wh i l e   t he   o sc i l l a to r   r e sponse  is t r e a t e d  quantum  mechanically. A s  a r e s u l t ,  
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the  second-order  quantum  mechanical  equation  of  motion is reduced  to  two  first- 

order  differential  equations,  that  are  subsequently  decoupled.  The  complexity 

of solution  is  thereby  reduced  greatly.  However,  the  semiclassical  approxima- 

tion  fails to properly  account  for  the  quantal  interference  between  colliding 

nuclei  while  the  decoupling  of  first-order  equations  obviates  the  conservation 

of  total  energy.  These  shortcomings  have  been  partially  compensated in similar 

harmonic  oscillator  models,  but  the  success  of  the  compensations  has  not  been 

tested  for  anharmonic  oscillators.  Part  of  this  third  objective  is  to  examine 

and  define  the  limitations  of  the  semiclassical  approximation  when  applied to 

anharmonic  oscillators.  The  results  will  contribute to a  more  complete  under- 

standing of the  associated  analytic  solutions  that  are  also  based  on  the  semi- 

classical  approximation. 

A final  objective  of  this  study  is  to  evaluate  the  influence  of  coupled 

rotational  motion  on  the  rate  of  vibrational  energy  transfer.  The  necessity 

of including  a  multitude of vibrational  states  with  large  quantum  numbers  to 

study  their  interactions  required  a  reduction  elsewhere  in  the  complexity of 

the  molecular  motion to keep  the  problem  within  practical  bounds.  The  obvious 

choice  was to eliminate  any  account  of  the  rotational  motion  by  limiting  the 

collision  geometry to one-dimensional  collinear  encounters.  This  procedure  is 

commonly  applied  throughout  the  literature  for  similar  reasons  and  is  usually 

based  on  the  presumption  that  collinear  collisions  are  the  most  effective  for 

inducing  vibrational  excitation.  However,  intuitive  notions  suggest  that  the 

inelasticity  of  three-dimensional  collisions is partitioned  among  vibrational 

and  rotational  degrees of freedom  in  the  molecule,  in  varying  amounts,  depend- 

ing  on  the  molecular  inertial  properties  and  the  initial  state.  Kelly  and 

Wolf~berg~~ have  used  a  fully  classical  model  to  demonstrate  that  collinear 
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collisions  are  not  always  the  most  effective  for  converting  vibrational  energy. 

For  example,  atom  collisions  with  molecules  possessing  widely  spaced  rotational 

states  can  induce  vibrational  transitions  with  very  little  energy  converted  to 

translational  motion.  Vibration-rotation  energy  transfer is then  a  more  cor- 

rect  description of the  event. On the  other  hand,  a  full  account  of  the 

coupled  vibration-rotation  motion  in  a  three-dimensional  collision  model  must 

include  at  least  all  of  the  energetically  accessible  rotational  states  in  each 

vibrational  level. As a  result,  collision  energies  sufficient  to  induce  vibra- 

tional  transitions  will  encompass  hundreds  of  multiply  degenerate  rotational 

states  in  most  molecules.  Since  the  occupation  of  each  state  must  be  treated 

as  a  separate  variable,  an  extremely  large  system  of  coupled  differential 

equations  is  required  whose  numerical  solution is intractable  for  all  but  the 

simplest  cases.  Fortunately,  some  methods  have  recently  been  introduced  that 

average  the  combined  action of degenerate  states  and  reduce  the  problem  to  an 

expensive,  but  tractable,  size.  Several  of  these  methods  are  evaluated  and 

applied  here,  in  conjunction  with  a  three-dimensional  semiclassical  collision 

model.  From  another  point of view,  the  objective  is  to  determine  the  conse- 

quences  and  validity  of  using  a  collinear  one-dimensional  model  to  predict  the 

vibrational  quantum  number  dependence of vibrational  energy  transfer  rates. 

The  results  give  considerable  credibility  to  the  preceding  conclusions of this 

study  derived  from  collinear  models. 

1.4 Overview of the  Contents  and  Results 

In  chapter 2, the  basic  concepts  and  assumptions  commonly  applied  in  the 

analysis  of  vibrational  energy  transfer  are  reviewed. A brief  historical 

review of vibrationally  inelastic  collision  models  is  first  presented  that 

provides  a  guide  to  a  number  of  more  complete  review  papers.  The  concepts 
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and  physical  factors  that  control  the  rate of energy  transfer  are  then  dis- 

cussed,  and  the  several  theoretical  approaches  from  which  the  rates  may  be 

estimated  are  evaluated  as  they  app1.y  to  the  objectives  of  this  study.  The 

semiclassical  approximation  is  shown  to  be  the  most  suitable  approach  to  the 

objectives  previously  stated. 

Having  established  the  primary  theoretical  approach  to  be  one  in  which 

the  incident  particle  path  is  computed  classically,  chapter 3 examines  the 

features of the  interaction  potentials  that  determine  both  the  internal  mole- 

cular  motion  and  the  classical  trajectory.  Arguments  are  presented  showing 

that  a Morse-oscillator/rigid-rotor description  of  the  molecule €s adequate 

for  the  purposes  of  this  study  and  that  the  classical  trajectory  may  be  deter- 

mined  from  just  the  short-range  repulsive  forces  between  colliding  nuclei. 

In  chapter 4 ,  a  collinear,  semiclassical,  collision  model  for  predicting 

V-T transition  probabilities  from  arbitrary  initial  states  is  developed  and 

evaluated.  Comparisons  are  made  with  equivalent,  exact,  fully  quantum  mechani- 

cal  solutions  obtained  from  the  literature  for  a  broad  range  of  collision 

parameters,  molecular  types,  and  initial  states.  While  similar  comparisons 

have  been  made  before,  they  have  been  less  complete  and  limited to harmonic 

oscillator  models  of  the  molecule  initially  in  the  ground  state.  This  work 

includes  a  more  extensive  variation  of  collision  parameters  and  tests  the 

application  of  the  semiclassical  approximation  to  an  anharmonic  Morse  oscil- 

lator  in  several  elevated  initial  states.  In  the  past,  there  has  been  a 

variation  of  opinions  on  the  best  method  of  compensating  for  the  lack  of 

energy  conservation  in  the  semiclassical  approximation.  The  comparisons  of 

this  study  show  that  the  correction  is  nearly  the  same  from  all  methods  sug- 

gested  and  no  clear  choice  of  the  best  method  is  possible - nor  is  a  choice 
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necessary  for  they  are  all  adequate  in  the  range  of  collision  energies  of 

interest.  Finally,  the  comparisons  in  chapter 4 bring  to  light  the  result 

that,  while  the  semiclassical  approximation  works  well  for  a  broad  range  of 

collision  parameters  when  the  molecule  is  treated  as  a  harmonic  oscillator,  the 

more  realistic  anharmonic  oscillator  model  imposes  some  definite  limitations. 

When  the  anharmonic  oscillator  is  homonuclear  and  struck  by  a  collision  partner 

whose  mass  is  less  than  either  molecular  nucleus,  the  semiclassical  approxima- 

tion  is  very  successful.  However,  its  application  to  heteronuclear  molecules 

or  to  homonuclear  molecules  struck  by  a  heavy  collision  partner  produces 

anomalous  resonances  that  do  not  appear  in  an  equivalent  harmonic  oscillator 

model.  These  anomalies  are  partially  eliminated  when  additional  coupling 

between  the  oscillator  and  the  incident  particle  is  introduced. 

With  the  limitations  of  the  semiclassical  approximation  established  for 

anharmonic  oscillators,  chapter 5 describes  an  investigation  of  the  factors 

that  influence  the  prediction  of V-T rates  for  initially  excited  molecules. 

The  capability  of  several  analytic  theories  for  reproducing  rate  coefficients 

predicted  by  a  more  exact  numerical  model  is  also  evaluated.  Unfortunately, 

the  most  widely  used  and  simplest  analytic  formula  also  produces  the  poorest 

estimate  of  quantum  number  dependence.  But  two  slightly  less  convenient 

analytic  models  are  found  to  reproduce  the  more  exact  predictions  for  well- 

defined  and  easily  identifiable  ranges of conditions.  Both  favorable  analytic 

models  are  based on a  collinear  semiclassical  description  of  the  collision. 

The  validity of the  collinear  collision  models  used  in  the  previous 

chapters  is  evaluated  in  chapter 6 using  a  three-dimensional  semiclassical 

model  developed  for  that  purpose. A complete  model is first  constructed  that 

allows  an  arbitrary  number of coupled  vibration-rotation  states to be included. 
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It provides  a bas i s   fo r   eva lua t ing   t he   accu racy   o f  some approximate 

formula t ions   in   which   the  combined e f f ec t s   o f   t he   degene ra t e   p ro j ec t ion  states 

a s soc ia t ed   w i th   each   ro t a t iona l  quantum s ta te  are decoupled  and  treated  col- 

l e c t i v e l y .  The a b i l i t y   t o   d e c o u p l e   t h e   d e g e n e r a t e  states makes t h e   o b j e c t i v e  

of t h i s   p a r t   o f   t h e   s t u d y   p o s s i b l e .  An "effective  Hamiltonian"  approximation 

is found t o   b e   t h e  most useful ,   and it is a p p l i e d   t o  a s tudy  of   the  inf luence 

of   ro ta t iona l   energy   t ransfer   on   the  rate o f   v i b r a t i o n a l   e x c i t a t i o n .  The 

r e s u l t s  show tha t   t he   e f f ec t s   o f   ro t a t ions   can   be   s eg rega ted   i n to   t h ree  

classes. For   molecules   l ike  hydrogen  or   the  hydrogen  hal ides   that   have a 

ro ta t iona l   f requency   on ly  a magnitude smaller than   the   fundamenta l   osc i l la tor  

f requency ,   the   ro ta t iona l   coupl ing  is l a r g e  and  energy  transfer  can  proceed 

v i a   ro t a t ion -v ib ra t ion   t r ans i t i ons   w i th   ve ry  l i t t l e  conversion of t r a n s l a t i o n a l  

energy. The behavior   of   molecules   with  these  propert ies  is f u r t h e r   s e p a r a b l e ,  

depending  on  the i n i t i a l   a n g u l a r  momentum, but   the   use   o f  a c o l l i n e a r   c o l l i -  

sion  geometry is  p h y s i c a l l y   u n r e a l i s t i c   i n  any  case  and  the  corresponding 

a n a l y t i c  rate formulas are consequently  of l i t t l e  value.  On the   o ther   hand ,  

t h e   t h i r d  and much la rger   c lass   o f   molecules ,   in   which  a mult i tude o f  rota-  

t i o n a l   l e v e l s  is con ta ined   i n   each   v ib ra t iona l  s t a t e ,  i s  not   inf luenced by t h e  

accompanying r o t a t i o n a l  motion  induced i n  a three-d imens iona l   co l l i s ion .  Rate 

coef f ic ien ts   ob ta ined   f rom a c o l l i n e a r   c o l l i s i o n  model then  reproduce a l l  of 

t he   phys i ca l   f ea tu re s   con ta ined   i n   t he   t h ree -d imens iona l   r e su l t s  and p r e d i c t  

an   essent ia l ly   ident ica l   dependence  on v i b r a t i o n a l  quantum number when com- 

p a r e d   w i t h   t h e   n e t   v i b r a t i o n a l   t r a n s i t i o n  rate summed over a l l  f i n a l   r o t a t i o n a l  

states. Correspondingly,   the   predict ions  for   such  molecules  are a l s o  shown t o  

b e   i n s e n s i t i v e   t o   t h e   i n i t i a l   r o t a t i o n a l  s ta te  of   the  molecule .   These  resul ts  

l e n d   c o n s i d e r a b l e   c r e d i b i l i t y   t o   t h e   r e s u l t s  from c o l l i n e a r   c o l l i s i o n  models 
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and to  the  analytic  solutions  that depend  on  them. Finally, chapter 7 

summarizes the new aspects of the results of th i s  study and presents some  con- 

siderations  for  additional  theoretical and experimental  study. 
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CHAPTER 2 

CONCEPTS I N  VIBRATIONAL ENERGY TRANSFER 

In  the  preceding  chapter,   methods  for  describing  the  macroscopic  behavior 

of a v i b r a t i o n a l   r e l a x a t i o n   p r o c e s s  were discussed. The microscopic   aspects  

of t he   p rocess  were con ta ined   i n  a thermally  averaged rate c o e f f i c i e n t ,  kv,Vv, 

of  undefined  nature.  The remainder   of   this   s tudy  concentrates  on t h e   p h y s i c a l  

f a c t o r s   t h a t   a f f e c t  G , v ~  and  on   the   theore t ica l   models   used   to   eva lua te  it. 

This   chapter   provides  a genera l   d i scuss ion   of   the   concepts   l ead ing  t o  a 

t h e o r e t i c a l  model. A b r i e f   h i s t o r i c a l  review is g i v e n   f i r s t   t h a t   p r o v i d e s  a 

commentary  on some p e r t i n e n t   p u b l i c a t i o n s   d e s c r i b i n g   t h e   v a r i o u s   c o n c e p t s   i n  

g r e a t e r   d e t a i l .  The la t te r  p a r t   o f   t h i s   c h a p t e r   d e f i n e s   t h e   c o n t r o l l i n g  

dynamic  and  molecular  parameters  affecting  kv,Vt  and  reviews  the  general con- 

s i d e r a t i o n s   l e a d i n g   t o  a choice   for   the   fundamenta l   theore t ica l   approach   to   be  

app l i ed   i n   t he   r ema inde r   o f   t h i s   s tudy .  

2 .1  H i s t o r i c a l  Summary and R e v i e w  L i t e r a t u r e  Guide 

In  the  1930's  and  before,   the  anomalous  absorption  and  dispersion  of 

u l t r a s o n i c  waves propagat ing   in   gases  were t h e   p r i n c i p a l  phenomena motivat ing 

the   s tudy   o f   v ib ra t iona l   ene rgy   t r ans fe r .  A l l  f l u i d s   a b s o r b   u l t r a s o n i c  waves 

th rough   shea r   v i scos i ty   l o s ses   and ,   i n  most cases, through  heat  conduction. 

By those  mechanisms,  they a l l  d i s p l a y  a corresponding  dispers ion.  However, 

molecular   f lu ids   ( i . e . ,   those   wi th  a capac i ty   for   in te rna l -energy   s torage)  

have  an  addi t ional   absorpt ion  and  dispers ion  or iginal ly   accounted  for  by 

h e u r i s t i c a l l y   i n t r o d u c i n g  a "bulk  viscosi ty"   into  the  Navier-Stokes  equat ions 

that  describe  the  process.   Investigators  soon  recognized,  however,   that   the 

a r t i f i c i a l   v i s c o s i t y  w a s  a mani fes ta t ion   o f   in te rna l -energy   absorp t ion   in   the  
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molecule. A s  early  as  1928,  Herzfeld  and  Rice5  explained  the  origin  of  the 

additional  absorption  and  dispersion  conceptually in terms  of  collisional 

energy  transfer  between  the  translational  and  internal  degrees  of  freedom  at a 

finite  rate. A few  years  later,  Oldenberg25  discussed  molecular  collisions 

qualitatively  to  show  the  inelasticity  of  rotational  and  vibrational  motion. 

In  1931,  Zener3,26  was  the  first  to  give  a  detailed  mathematical  treatment  for 

vibrationally  inelastic  collisions.  His  theory  was  based  on  a  quantum  mechan- 

ical  perturbation  method,  referred  to  as  a  "distorted  wave  approximation," 

applicable  to  low  collision  energies  where  the  transition  probabilities  are 

small.  Then,  in  1936,  Landau  and  Teller4  published  their  historic  paper  in 

which  the  properties  of  the  rate  coefficient  were  explored,  again  from  a  more 

conceptual  point  of  view.  They  used  partially  intuitive  arguments  (with  no 

reference  to  the  earlier  work)  to  show  that  equation  (1.2)  described  the  rudi- 

mentary  dependence  of  kv,v-l  on  v  and  they  obtained  the  equally  important 

dependence  of kv , v- on  temperature,  given  by  log  kv,v-l Q 

Later,  interest  shifted  away  from  theoretical  work  addressed  to  ultra- 

sonic  relaxation  phenomena,  but  increased  in  the  study  of  a  very  similar 

inelastic  molecular  collision  problem.  The  accommodation  coefficient,  related 

to  the  energy  transfer  between  gas  molecules  and  a  solid  surface,  was  studied 

extensively,  first  by  Jackson  and  his  coworkers27  and  later  by  Lennard-Jones 

and  his  coworkers.28  The  paper  by  Jackson  and  Mott27b  became  particularly 

noteworthy  because it provided  a  simplified  mathematical  derivation of the 

I 1  distorted  wave  approximation"  still  referred  to  in  modern  texts. 

Only  a  few  contributions  to  the  field  of  vibrational  relaxation  followed 

until  the  early  1950's.  For  example,  one-dimensional  treatments  by  Zener  and 

other  early  investigators  were  extended  to  three-dimensional  collisions. 
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After  1950,  TakayanagiBg  introduced  the  "modified  wave  number"  approximation 

designed  to  reduce  the  numerical  labor  in  three-dimensional  problems  and 

applied it to  rotational  transitions  in  hydrogen.  Meanwhile,  Schwartz, 

Slawsky,  and  Herzfeld30  published  their  well-known  paper  in  which  vibrational 

transitions  were  treated  with  the  distorted  wave  approximation.  Their  closed- 

form  analytic  formulas  for  resonant  and  nonresonant  transition  probabilities 

in  collinear  collisison  have  become  the  most  widely  used  means  of  estimation 

until  recent  times.  Their  formulation,  often  referred  to  as  the  SSH  theory, 

was  later  extended  to  three-dimensional  collisions  but  for  a  nonrotating 

molecule. 3 

Experimental  methods  for  measuring  vibrational  relaxation  times  were  also 

developing.  Improved  rate  data  were  obtained  from  measurements  in jets32~33 

and  behind  shock  waves34, 35 at  other  than  room  temperatures.  The  existing 

perturbation  theories  were  not  always  applicable  to  the  analysis  of  these new 

experimental  techniques,  however,  because  the  theories  were  limited  to  low- 

energy  collisions  pertaining  mostly  to  near-room  temperatures.  In  1958, 

Kerner36  obtained  a  nonperturbative  exact  solution  to  the  Schrodinger  equation 

for  a  harmonic  oscillator  in  the  presence  of  a  time-dependent  forcing  function. 

The  only  constraint  on  the  forcing  function  was  that  it  be  linear  in  the 

oscillator  coordinate.  Kerner's  solution  was  subsequently  applied  by T r e a n ~ r ~ ~  

in  a  semiclassical  treatment  of  high-energy  collinear  collisions,  thereby 

achieving  an  analytically  exact  formula in closed  form  for  the  transition 

probabilities  of  a  harmonic  oscillator  at  all  collision  energies. 

The  1960's  brought  on  a  deluge  of  publications  concerned  with  vibrational 

relaxation  phenomena  that  has  persisted  to  this  day. So much  experimental 

information  became  available  that  Millikan  and  White38  were  able  to  correlate 
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empirically  vibrational  relaxation  times  for a large  number  of  diatomic  mole- 

cules  in  terms  of  the  fundamental  oscillator  frequency  and  the  reduced mass of 

the  collision  pair.  Their  correlation  was  only  modestly  guided  by  theory,  how- 

ever.  During  this  period,  theoretical  studies  were  stimulated  by a rapidly 

growing  computer  technology.  Consideration of exact  numerical  solutions  to  the 

collision  problem  became a reasonable  occupation;  but  vibrationally  inelastic 

solutions  were  awkward  until  Secrest  and  Johnson3'  developed a numerical  method 

of  "amplitude  density  functions"  that  allowed  one-dimensional  scattered  wave 

functions.to  be  obtained  efficiently.  Their  methods  have  since  been  extended 

to treat  three-dimensional  collisions  with  vibrational  and  rotational 

inelasticity. 4O 

The  early  1960's  also  marked  the  appearance  of some review  articles  of 

modern  interest  that  describe  the  various  theoretical  approaches  in  detail. 

One  of  the  first  was  the  chapter  by  Herzfeld4I  on  "Relaxation  Phenomena  in 

Gases."  His  discussion  is  based  primarily  on  the  application  to  ultrasonic 

absorption  and  dispersion,  but  he  gives a clear  account  of  the  early  theoreti- 

cal  approaches  in  which  the  fundamental  collision  parameters  are  described. 

He later  provided a more  complete  account  in  textbook  form.  Cottrell  and 

M~Coubrey~~ took a slightly  more  modern  approach  in  their  book  by  dealing 

with  the  quantum  mechanical  aspects  of  the  collision  process  in  greater  detail. 

However,  their  discussion  remains  physically  descriptive  and  valuable  as  an 

Introduction  to  the  theoretical  approximations  leading  to  analytic  solutions. 

Taka~anagi~~ provided  the  first  comprehensive  review  of  the  theoretical  aspects 

of vibrationally  and  rotationally  inelastic  collisions  covering  the  period  up 

to 1963.  With  the  rapid  developments  in  the  field  following  1963, Taka~anagi~~ 
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published a second,  equally  comprehensive,  review  covering  the  developments  to 

1965. 

The  reviews  published  before 1965 preceded  the  time  when  exact  quantal . . 

solutions  for  vibrationally  inelastic  collisions  were  obtainable  with  suffi- 

cient  ease  and  confidence  to  serve  as a basis  for  testing  the  approximate 

methods.  Prior  emphasis  was  directed  toward  the  comparison  of  approximate 

theories  with  experiment  as a test  of  their  validity. A more  recent  review  by 

Rapp  and K a ~ s a l ~ ~  was  therefore  addressed,  in  part,  to  an  evaluation  of  the 

earlier  theories  by  comparing  them  with  exact  numerical  solutions.  With  the 

greatly  increased  detail  of  information  about  the  collision  dynamics  in  view, 

both  from  fully  quantum  mechanical  and  fully  classical  numerical  solutions, 

Rapp  and  Kassal  evaluate  many  of  the  assumptions  contained  in  the  approximate 

collision  models  and  provide a useful  guide  to  their  range  of  applicability. 

Their  article  also  deals  with  some  aspects  of modem interest  such  as  the 

transfer  of  vibrational  energy  between  oscillators  and  the  effects  of  oscil- 

lator  anharmonicity.  However,  at  the  time  of  Rapp  and  Kassal's  writing,  the . 

new  class  of  vibrational  relaxation  processes  had  not  quite  impacted  the 

theoretical  community.  Their  emphasis  therefore  centered  on  the  dynamics  of 

oscillators  in  or  near  the  ground  state. 

The  beginning  of  this  decade  brought  in  widespread  efforts  to  deal  with 

the  new  requirements  in  the  analysis  of  vibrational  energy  transfer.  Rich  and 

T r e a n ~ r ~ ~  presented a comprehensive  review of the  aspects  of  vibrational 

relaxation  in  gasdynamic  flows.  Their  discussion  is  devoted  mainly  to  non- 

equilibrium  flow  processes  and  hence  to  an  application  of  vibrational  rate 

theories,  but  they  also  provide a detailed  description  of  many  aspects  of 
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v i b r a t i o n a l   e n e r g y   t r a n s f e r   t h a t   m o t i v a t e d   t h i s   s t u d y   a n d   t h e i r  review serves 

as a n   i n t r o d u c t i o n   t o   t h e  new class of   re laxa t ion   processes .  

With  numerical   invest igat ions now a p r a c t i c a l  and  popular  approach  to 

molecular   physics ,   th is   decade  begins   the era i n  which  molecular   col l is ions 

can   be   s tud ied   i n  much g r e a t e r   d e t a i l .  Many o f   t he  new methods i n  "numerical 

physics" are descr ibed by S e ~ r e s t ~ ~   i n  a r e c e n t  review o f   t h e i r   a p p l i c a t i o n   t o  

r o t a t i o n a l  and   v ib ra t iona l   ene rgy   t r ans fe r .  Most methods are motivated  by  the 

need to   reduce  the  numerical   labor   and  expense.   For   example,   act ivi ty   in   the 

use   o f   fu l ly  classical  c a l c u l a t i o n s   f o r  reactive a n d   v i b r a t i o n a l l y   i n e l a s t i c  

co l l i s ions   has   f lour i shed   wi th   the   deve lopment   o f  "Monte Carlo'' o r  random- 

s e l e c t i o n  methods f o r   a v e r a g i n g   t h e   r e s u l t s   o f  many t r a j e c t o r i e s  and  or ienta-  

t i o n s .  48 Another new concept is  the  semiquantal  approximation,  developed 

independently by both Miller49 and  Marcus.  Also  termed  the "classical 

S-mat r ix"   theory ,   the   p r inc ipa l   d i s t inc t ion   of   the   semiquanta l   approach   f rom 

ear l ie r  semiclassical methods i s  tha t ,   i n   t he   fo rmer ,   deg rees   o f   f r eedom 

are t r e a t e d   c l a s s i c a l l y   b u t   w i t h   t h e  quantum-mechanical pr inciple   of   super-  

pos i t ion   subsequent ly   appl ied .  While t h e  method al lows  pure quantum e f f e c t s  

such as t u n n e l i n g ,   s e l e c t i o n   r u l e s ,   a n d   i n t e r f e r e n c e   t o   b e   s t u d i e d  and  has 

g i v e n   r e a s o n a b l y   a c c u r a t e   p r e d i c t i o n s   f o r   v i b r a t i o n a l l y   i n e l a s t i c   c o l l i s i o n s ,  51 

i t s  l i m i t a t i o n s  are  n o t   y e t   f u l l y   c h a r t e d .  Two reviews..of  the  theory  have. I 

recent ly   been  publ ished by Miller. 5 2 9 5 3  

A f i n a l   m i l e s t o n e   t h a t   h a s   c o n t r i b u t e d   s i g n i f i c a n t l y   t o   t h e   r e s u l t s  of 

t h i s   s t u d y  is the  success   of  several e f f o r t s   t o   a v e r a g e   t h e  combined contribu- 

t i ons   o f   degene ra t e   ro t a t iona l  states and  thereby make the   s tudy   of   v ibra t ion-  

r o t a t i o n   i n t e r a c t i o n s   f e a s i b l e .   F o r t h c o m i n g   d i s c u s s i o n s   i n   t h i s   s t u d y  demon- 

s t ra te  t h e   f u t i l i t y  of a complete  treatment  of  the  problem. The f i r s t  
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successful  solution  to  the  problem  was  presented  by  Rabitz, 54 who  formulated 

an  "effective  Hamiltonian"  that  nullifies  the  contribution  of  individual  pro- 

jection  quantum  states  before  the  equations  of  motion  are  solved.  Following 

his  work,  McGuire  and  KouriS5  proposed a ftjZ-conserving"  approach  of  some  simi- 

larity  to  the  effective  Hamiltonian  approximation. A different  method  of 

reducing  the  rotational  aspects  of  the  problem  has  been  studied  by  Pack  and 

his  coworkers, 56  who  treat  the  rotational  motion  in a ''sudden  approximation," 

well  known  in  its  basic  form  from  numerous  modern  textbooks  on  quantum  mechan- 

ics.  The  relationship  of  all  of  these  methods  for  decoupling  the  internal 

angular  momentum  of  the  molecule  has  recently  been  examined  by  Secrest. 57 

These  methods  and  their  application  represent a large  part  of  the  current 

activity  in  studies  of  vibrationally  and  rotationally  inelastic  collisions. 

2.2  General  Considerations 

Considered  in  the  following  paragraphs  are  some  of  the  general  concepts 

and  controlling  parameters  that  form  the  basis of most  theoretical  models  for 

collisions  involving a diatomic  molecule.  The  general  features  of  several 

theoretical  approaches  are  then  reviewed  to  guide  the  choice  of a method  best 

suited  to  the  intentions  of  this  study. 

2.2.1  Modes  of  Energy  Transfer  in  Diatomic  Molecules 

Binary  collisions  involving a diatomic  molecule  are  not  yet  treated  in 

general  terms  entirely  from  first  principles. Ab i n i t i o  approaches  to  the 

many-body  problem  presented  by  three  or  more  nuclei  and  their  attendant  elec- 

trons  are  still  intractable  on  present-day  computers.  Fortunately,  when  elec- 

tronic  transitions  are  not  of  concern,  an  adequate  collision  model  does  not 
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require  an  explicit  description  of  the  coupled  nuclear  and  electron  motion  but 

instead  relies on the  nearly  instantaneous  adjustment  made  by  the  electrons  to 

the  nuclear  motion.  The  problem  then  reduces  to  one  of  describing  only  the 

dynamics  of  the  nuclear  motion  during a collision  but  requires  interaction 

potentials  independently  obtained  by  some  less  rigorous  means. 

In  this  study,  our  interest  is  further  restricted  to  collisions only of a 

diatomic  molecule  with a heavy  structureless  particle  such  as an atom  in  its 

ground  electronic  state.  The  inelasticity  of  the  collision is  then  confined 

to  the  internal  rotational  and  vibrational  energy  modes  of  just  one  molecule 

and  we  avoid  the  complexity  of  dealing  with  the  exchange  of  internal  energy 

between  molecules.  Energy  transfer  still  occurs  to  any  of  several  internal 

modes,  however,  as  figure  2.1  illustrates. A characteristic  of  most  diatomic 

molecules  is  the  widely  separated  vibrational  eigenenergies  (heavy  line  levels 

in fig.  2.1),  each  with a manifold  of  closely  spaced  rotational  states  (light 
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Figure  2.1.-  Modes  of  energy  transfer  in a diatomic  molecule. 
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line  levels  in  fig. 2.1). Thus,  a  collision  with  sufficient  energy to excite 

vibrational  motion  in  the  molecule  will  simultaneously  excite  many  rotational 

states  as  well.  The  arrow  labeled  V-R-T  (vibration-rotation-translation)  in 

figure  2.1  typifies  those  kinds  of  transitions.  The  internal  energy  change 

appearing  in  the  molecule  will  be  reflected  as  a  change  in  the  translational 

energy  of  the  colliding  pair.  While  a  complete  description of V-R-T  energy 

transfer  is  complex,  certain  limited  paths  for  energy  transfer  are  often  the 

dominant  mechanism  and  they  can  then  be  treated  separately.  For  example, 

near-resonant  transitions  between  vibration-rotation  states  (V-R  in  fig.  2.1) 

may  be  dominant  in  some  molecules  with  a  suitable  initial  condition.  In  this 

case,  any  energy  traded  with  translation  appears  only  as  an  elastic  deflection 

after  the  encounter.  In  another  situation,  the  small  amount of energy  required 

to induce  a  rotational  transition  within  the  same  vibrational  state  makes  the 

exchange  of  rotational  and  translational  energies  (R-T  in fig. 2.1)  probable 

at  collision  energies  where  the  vibrational  state  of  the  molecule  may  be 

ignored.  The  molecule  is  treated  as  a  rigid  rotor  in  such  circumstances.  The 

analyses of these  limited  cases  involving  rotation  are  usually  simpler  than 

t 
\ 
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(a)  Three-dimensional  encounter. 

(b) One-dimensional  collinear  encounter. 

Figure  2.2.-  Collisional  motion. 
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the   genera l  case, but  a three-dimensional  coll ision  geometry is s t i l l  required 

as shown in   f i g .   2 .2 (a ) .   I n   con t r a s t ,   an   even   s imple r   bu t  more r e s t r i c t e d  

t rea tment   o f   the   co l l i s ion  is one i n  which  no r o t a t i o n a l   t r a n s i t i o n   o c c u r s .  

Translat ional   energy is exchanged  only  with  vibration (V-T i n   f i g .   2 . 1 ) .  

Events   o f   th i s   na ture   can   occur   in  a three-dimensional   encounter   of   arbi t rary 

or ien ta t ion   because   t rans i t ions   a lways   t ake   p lace   wi th  a p r o b a b i l i t y  less than 

un i ty  (making  no r o t a t i o n a l   t r a n s i t i o n   a l s o   p r o b a b l e ) ,   b u t  a frequent ly   used 

approach  that   drastically  reduces  the  complexity  of  the  problem is  t o  assume 

t h a t   t h e  most e f f i c i e n t   p r o d u c e r s   o f   v i b r a t i o n a l   t r a n s i t i o n ' s  are c o l l i s i o n s  

w i t h   t r a j e c t o r i e s   a l o n g   t h e   i n t r a n u c l e a r  axis of a nonrotating  molecule.  The 

corresponding  one-dimensional  collinear  geometry is i l l u s t r a t e d   i n   f i g -  

ure  2.2(b).  A s  i t  t u r n s   o u t ,  we s h a l l   f i n d   i n   t h i s   s t u d y   t h a t   t h e   c o l l i n e a r  

where  unsubscripted k is Boltzmann's  constant  and p i s  the  reduced mass of 

t h e   c o l l i s i o n .   I f  9 denotes   the mass of  nucleus i, then,   using  the  nota-  

t i o n   i n   f i g u r e  2, 

Methods of per forming   the   in tegra ls   in   equa t ions   (2 .1)  and  (2.2) are 

d i s c u s s e d   i n   g r e a t e r   d e t a i l   i n   c h a p t e r s  5 and 6 where s p e c i f i c   a p p l i c a t i o n s  

are made. A t  t h i s   p o i n t ,  one  only  needs  to   recognize  that   obtaining  the  t ran-  

cross   sect ion,   da/dQ,   f rom a f u l l  quantum  mechanical  treatment i s  t h e  funda- 

mental  problem. Once e i t h e r   o f   t h e s e   r e s u l t s  i s  obtained, a ca l cu la t ion   o f  

the  corresponding rate c o e f f i c i e n t s  i s  r e l a t ive ly   s t r a igh t fo rward .  

2 .2 .3   Control l ing  Variables   in   Vibrat ional   Energy  Transfer  

For a c o l l i s i o n   t o   a f f e c t   t h e   v i b r a t i o n a l   m o t i o n   o f   a n   o s c i l l a t o r ,   t h e  

d i s tu rb ing   fo rce   c r ea t ed   by   t he   impac t ing   pa r t i c l e  must v a r y   i n  a time per iod 



line  levels  in  fig.  2.1).  Thus,  a  collision  with  sufficient  energy to excite 

vibrational  motion  in  the  molecule  will  simultaneously  excite  many  rotational 

states  as  well.  The  arrow  labeled  V-R-T  (vibration-rotation-translation)  in 

figure  2.1  typifies  those  kinds  of  transitions.  The  internal  energy  change 

appearing  in  the  molecule  will  be  reflected  as  a  change  in  the  translational 

energy  of  the  colliding  pair.  While  a  complete  description of V-R-T  energy 

transfer  is  complex,  certain  limited  paths  for  energy  transfer  are  often  the 

dominant  mechanism  and  they  can  then  be  treated  separately.  For  example, 

near-resonant  transitions  between  vibration-rotation  states  (V-R  in  fig.  2.1) 

may  be  dominant  in  some  molecules  with  a  suitable  initial  condition.  In  this 

case,  any  energy  traded  with  translation  appears  only  as  an  elastic  deflection 

after  the  encounter. In another  situation,  the  small  amount  of  energy  required 

to  induce  a  rotational  transition  within  the  same  vibrational  state  makes  the 

exchange of rotational  and  translational  energies  (R-T  in  fig.  2.1)  probable 

at  collision  energies  where  the  vibrational  state  of  the  molecule  may  be 

ignored.  The  molecule  is  treated  as  a  rigid  rotor  in  such  circumstances.  The 

analyses of these  limited  cases  involving  rotation  are  usually  simpler  than 
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(a)  Three-dimensional  encounter. 

(b) One-dimensional  collinear  encounter. 

Figure  2.2.-  Collisional  motion. 
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the  general  case,  but  a  three-dimensional  collision  geometry  is  still  required 

as  shown  in  fig.  2.2(a).  In  contrast,  an  even  simpler  but  more  restricted 

treatment  of  the  collision  is  one  in  which  no  rotational  transition  occurs. 

Translational  energy  is  exchanged  only  with  vibration  (V-T  in  fig. 2.1). 

Events  of  this  nature  can  occur  in  a  three-dimensional  encounter  of  arbitrary 

orientation  because  transitions  always  take  place  with  a  probability  less  than 

unity  (making  no  rotational  transition  also  probable),  but  a  frequently  used 

approach  that  drastically  reduces  the  complexity  of  the  problem is to  assume 

that  the  most  efficient  producers  of  vibrational  transition's  are  collisions 

with  trajectories  along  the  intranuclear  axis  of  a  nonrotating  molecule.  The 

corresponding  one-dimensional  collinear  geometry  is  illustrated  in  fig- 

ure 2.2(b). A s  it turns  out,  we  shall  find  in  this  study  that  the  collinear 

collision  model is surprisingly  useful  for  predicting  the  rate  of  vibrational 

energy  transfer  when  many  rotational  states  are  associated  with  each  vibra- 

tional  mode.  Unfortunately,  the  incomplete  nature  of  the  collinear  model 

makes it awkward  to  obtain  a  rate  coefficient  from  the  detailed  collision 

dynamics  calculated,  whereas  rate  coefficients  evolve  naturally  from  the 

results  of  a  three-dimensional  model,  as  the  following  discussion  demonstrates. 

2.2.2  Rate  Coefficients  from  the  Collision  Dynamics 

The  relationships  between  a  thermally  averaged  rate  coefficient  and  the 

results  of  a  microscopic  collision  model  depend  somewhat  on  the  theoretical 

description  used  to  model  the  collision.  For  example,  a  semiclassical  formu- 

lation  in  which  the  incident  particle  trajectory  is  obtained  from  the  classical 

equations  of  motion  deals  with  collisions  characterized  by  the  parameters  E 

and  b,  where E is  the  initial,  relative,  kinetic  energy  in  a  center-of-mass 

reference  frame  and  b  is  the  impact  parameter  measuring  the  minimum  distance 
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between mass cen te r s   o f   each   co l l i s ion   pa r tne r   t ha t  would o c c u r   i f   t h e  rela- 

tive pa th  were no t   de f l ec t ed .  The  outcome is  a t r a n s i t i o n   p r o b a b i l i t y ,  P(E,)) 

between  each   pa i r   o f   in te rna l  quantum states, v and v ' ,  i n c l u d e d   i n   t h e  molecu- 
v-tv 

lar  model. A necessa ry   s t ep   i n   ob ta in ing   t he   co r re spond ing  rate c o e f f i c i e n t  is 

t o   f i r s t  p roduce   t he   t o t a l   c ros s   s ec t ion ,  o(E) . I n   t h e  semiclassical frame- 

work, a t o t a l   c r o s s   s e c t i o n  may be  generated by r e p e a t i n g   t h e   c a l c u l a t i o n   f o r  
*V r 

a su f f i c i en t   r ange   o f   impac t   pa rame te r s   t o   eva lua te   t he   i n t eg ra l  

Likewise, a f u l l y  quantum  mechanical  description  of  both  the  molecule  and 

inc iden t   pa r t i c l e   mo t ion   fo l lows  a similar procedure. However, t h e   i n c i d e n t  

p a r t i c l e   p a t h  is n o t   l o c a l i z e d  so  t h e   c o l l i s i o n  must  be cha rac t e r i zed   i n s t ead  

by E and a f i n a l   s c a t t e r i n g   d i r e c t i o n ,  R. The  outcome i s  a d i f f e r e n t i a l  

c r o s s   s e c t i o n  do/dSl, which may be computed f o r  a l l  e lemental   sol id   angles   and 

in tegra ted   over   the   sphere   by   an   express ion  similar to   equat ion  (2 .1) .   In  

contrast   to  any  three-dimensional  method,  equation  (2.1)  or i ts equivalent  

cannot   be   appl ied   in  a c o l l i n e a r   c o l l i s i o n  model because b o r  Sl are no t  

inc luded   var iab les .   Thus ,   ob ta in ing  a(E) from a c o l l i n e a r   d e s c r i p t i o n  
W V '  

r equ i r e s  some kind  of "steric f ac to r "  on  an  "effect ive  hard-sphere  cross  sec- 

t ion"   to   be   in t roduced .   These   addi t iona l   a r t i fac ts  are d i s c u s s e d   i n   g r e a t e r  

d e t a i l  i n  chap te r s  5 and 6 where   co l l inear   co l l i s ion   models  are evaluated. 

Once t h e   c r o s s   s e c t i o n  is i n  hand,   the  desired rate c o e f f i c i e n t   f o r  

v -+ v' t r a n s i t i o n s  i s  obtained by averaging  the  energy-dependent   total   cross  

sec t ions   ove r  a thermal   energy   d i s t r ibu t ion   charac te r ized  by a k i n e t i c  temper- 

a t u r e  T. Remembering that E i s  t h e  relat ive  k i n e t i c   e n e r g y   i n  a center-of- 

mass f r ame ,   t he   r e su l t  is8 
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where  unsubscripted k i s  Boltzmann’s  constant  and v is the  reduced mass of 

t h e   c o l l i s i o n .   I f  9 denotes   the mass of  nucleus i, then,   using  the  nota-  

t i o n   i n   f i g u r e   2 ,  

Methods of   performing  the  integrals   in   equat ions  (2 .1)   and (2 .2)  are 

d i s c u s s e d   i n   g r e a t e r   d e t a i l   i n   c h a p t e r s  5 and 6 where s p e c i f i c   a p p l i c a t i o n s  

are made. A t  t h i s   p o i n t ,  one  only  needs t o   r e c o g n i z e   t h a t   o b t a i n i n g   t h e   t r a n -  

s i t i o n   p r o b a b i l i t y ,  P ( E , t ) ,  from a semiclassical t r e a t m e n t   o r   t h e   d i f f e r e n t i a l  

c r o s s   s e c t i o n ,  da/dR,  from a f u l l  quantum  mechanical  treatment i s  t h e  funda- 
V t V  

mental  problem. Once e i t h e r   o f   t h e s e   r e s u l t s  is obtained,  a ca l cu la t ion   o f  

the  corresponding rate c o e f f i c i e n t s  is r e l a t ive ly   s t r a igh t fo rward .  

2.2.3 Con t ro l l i ng   Var i ab le s   i n   V ib ra t iona l  Energy  Transfer 

For a c o l l i s i o n   t o   a f f e c t   t h e   v i b r a t i o n a l  motion  of   an  osci l la tor ,   the  

d i s t u r b i n g   f o r c e   c r e a t e d  by the   impac t ing   pa r t i c l e  must v a r y   i n  a time per iod 

t h a t  is comparable  with  or less than  the  normal   osci l la tor   per iod.   Otherwise,  

a s lowly   appl ied   d i s turbance   s imply   a l lows   the   osc i l la tor   to   ad jus t   ad iaba t i -  

c a l l y ,   l e a v i n g  i t s  f ina l   condi t ion   unaf fec ted  by the  encounter.  Conversely, 

an  impulsively  appl ied  force w i l l  s eve re ly   d i s tu rb   t he   phase   o f   t he   o sc i l l a to r  

motion  and e f f i c i e n t l y   u p s e t   t h e   p r o p o r t i o n s   o f   e n e r g y   i n   v i b r a t i o n ,   r o t a t i o n ,  

and  translation.  These  conditions  can  be  expressed more e x p l i c i t l y  by  denot- 

i ng  a r e p r e s e n t a t i v e  time i n t e r v a l   i n  which t h e   c o l l i d i n g   p a i r   i n t e r a c t  as 

rc and l e t t i n g  uo represent   the   fundamenta l   osc i l la tor   f requency .  We then 
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a rgue   t ha t   ene rgy   t r ans fe r  w i l l  occur   wi th   increased   e f f ic iency  as 'cC becomes 

less t h a n   t h e   o s c i l l a t o r   p e r i o d  l / v o ,  t h a t  is, 'ccv0 -t 0. One way t o   e v a l u a t e  

the  magnitude  of 'cc is by n o t i n g   t h a t   t h e   i n t e r a c t i o n   d i s t a n c e   f o r   c o l l i s i o n s  

inf luenced  mainly  by  repuls ive  forces   can  be  loosely  measured  in  terms of  a 

range  parameter L, Then 'cc 2L/u,  where u is the   average relative c o l l i -  

s ion   speed .   I f   t he  relative k ine t ic   energy  i s  E and v is the  reduced 

mass, t hen   t he  relative co l l i s ion   speed  is  J(2E/1J.) and t h e   e f f i c i e n c y   o f  

ene rgy   t r ans fe r  w i l l  i nc rease  as 

LV0@ -t 0 

We shou ld   t he re fo re   expec t   t he   quan t i t i e s   r e l a t ed   t o   t he   e f f i c i ency   o f   ene rgy  

t r ans fe r ,   such  as P ( E , t )  and a ( E )  , t o   i n c r e a s e   w i t h  E and t o   d e c r e a s e  as 

the   o sc i l l a to r   f r equency ,   i n t e rac t ion   r ange ,   o r   nuc lea r  masses are made 
v+v V" 

l a r g e r .  Note tha t   the   impact   parameter ,   by   could   a l so   se rve  as a measure  of 

t h e   i n t e r a c t i o n   r a n g e  when i t  exceeds L. C o l l i s i o n s  a t  i n c r e a s i n g  b w i l l  

become  more ad iaba t i c   w i th   an  accompanying  decrease i n  P ( E , k ) .  
v-tv 

The preceding   re la t ionships  are sometimes  described i n  terms of  an 

"adiabat ic i ty   parameter"  

The l a r g e r  5 becomes, t h e  more a d i a b a t i c  is  the  encounter.   Values  of 5 

below u n i t y  l i e  i n   t h e  "sudden" reg ion .   S imi la r   ideas  are app l i ed   t o   ro t a -  

t iona l   mot ion  as well simply  by  replacing vo wi th   the   fundamenta l   ro ta t iona l  

frequency,  vr.   Note  that   in many molecules, vo >> vr so t h a t   c o l l i s i o n s   i n  

some energy  range may be   ad iaba t i c   w i th   r ega rd   t o   v ib ra t ions   wh i l e   sudden   i n  

r e s p e c t   t o   r o t a t i o n s .  
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The  effects  of  varying 5 can  be  made  slightly  more  quantitative  by  con- 

sidering its sequel,  the  "resonance  function," R ( E ) ,  a measure of the effi- 

ciency of energy  transfer.  If AE(<) is the  average  energy  transferred in a 

collision  characterized  by 5, we can  define 

R(S) = AE(S)/AE(S = 0) (2.6) 

where AE(S = 0) is the  energy  transferred  in  the  sudden  limit.  Although  the 

computation  of R(C) requires  a  solution  of  the  detailed  equations  of  motion, 

the  outcome  for  atom-molecule  collisions  appears  approximately  as 

N E )  x e -5  (2 .7 )  

Hence  the  efficiency  of  energy  transfer  can  be  expected  to  decrease  exponen- 

tially  as  the  encounter  becomes  more  adiabatic.  This  feature  will  manifest 

itself  in  the  following  chapters  by  the  use  of  semilogarithmic  plots  for  all 

quantities  related to R(<) when  plotted  as  functions  of  the  variables  con- 

tained  in E .  

2 . 3  Theoretical  Methods  for  Modeling  Collision  Dynamics 

The  preceding  discussion  made  use  of  simple  conceptual  arguments  to  char- 

acterize  the  collisional  transfer  of  energy,  but  an  estimate  of  the  amount  of 

energy  transferred  can  be  obtained  only  from  a  detailed  solution  of  the  equa- 

tions  of  motion.  The  motion  is  customarily  described  in  the  literature  using 

one of three  levels of quantization: (1) a  fully  classical  treatment  in  which 

quantization  is  imposed  artificially  on  the  internal  energy  of  the  molecule 

before  (and  sometimes  after)  the  collision, (2) a  semiclassical  approximation 

in  which  the  path  of  the  incident  particle  is  obtained  classically  but  the 

molecule  response  is  handled  quantum  mechanically,  and (3 )  a  fully  quantum- 

mechanical  formulation  in  which  all  members of the  system  are  represented  in  a 

quantum-mechanical  wave  equation. (A fourth  intermediate  level  of  quantization 
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might  also  be  given  as  the  semiquantal  method  developed  by  and 

Marcus5'  in  which  the  phase  distortions  of  the  motion  are  obtained  classically 

but  subsequently  treated  quantum  mechanically.  The  validity  of  the  semi- 

quantal  approximation  in  treating  vibrational  energy  transfer  is  still  a  topic 

for  study,  but  it  appears  to  give  satisfactory  results  for  the  few  examples 

and  has  several  advantages  worthy  of  consideration. At the 

time  this  study  was  begun,  however,  the  implications  of  the  semiquantal 

approximation  were  not  clearly  established,  precluding  its  further  considera- 

tion  here.) To choose  the  most  sudtable  theoretical  method  for  meeting  the 

objectives  of  this  study,  we  now  briefly  consider  the  general  features  of  each 

of  the  three  principal  methods  of  approach. 

2.3.1 Classical  Collision  Theories 

A large  number  of  fully  classical  calculations  for  collisions  involving 

the  vibrational  and  rotational  motion  of  a  diatomic  molecule  have  been  carried 

out  in  recent  times. 2 4 7 4 8 y  63-67 Modern  results  have  shown  that , when  the 

oscillator  zero-point  energy  is  included  (a  quantum  limit to the  minimum  vibra- 

tional  energy),  classical  calculations for the  total  transfer of vibrational 

energy  reproduce  the  equivalent  quantal  predictions  quite  well.  This  is  not 

too  surprising  if  one  notes  that  the  transfer  of  vibrational  energy  does  not 

depend  on  any  pure  quantum  effects  such  as  tunneling  or  wave  interference. 

However,  a  kind  of  quantum  effect  is  ignored  in  a  classical  treatment  when  a 

continuum  of  energy is transferred  to  the  molecule  without  restriction  to 

discrete  quantum  increments.  Collision  energies  in  a  moderate  thermal  range 

excite  only  a  few  vibrational  quanta so that  the  partitioning  of  energy  into 

widely  separated  quantized  levels,  excluded  in  a  classical  treatment,  may  have 

some  influence  on  the  molecular  motion.  The  validity  of  a  classical 
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description  that  ignores  these  effects  is  not  clear.  For  rotational  motion, 

quantum  selection  rules  impose  clearly  identified  limitations  on  the  path  of 

energy  transfer'throughout  the  internal  states  of  the  molecule.  The  effects 

of  these  limitations  on  the  total  energy  transferred  are  not  very  severe  in 

molecules  where  the  rotational  energy  spacing  is  small  and  continuum-like  but, 

again,  the  criteria  for  treating  the  rotational  motion  classically  are  not 

obvious.  Finally,  a  classical  description  of  the  collision  dynamics  reveals 

only  the  total  energy  transferred  to  the  molecule,  but  it  provides  no  rigorous 

description  of  the  manner  in  which  the  energy  is  partitioned  among  quantized 

internal  states.  Since  the  objectives  of  this  study  pertain  specifically  to 

the  rate  of  energy  transfer  to  individual  internal  states,  a  classical  colli- 

sion  model  would  require  considerable  interpretation  to  produce  such  results. 

Hence  the  use  of  a  fully  classical  description of the  collision  dynamics  does 

not  appear  to be suitable  for  this  study  and  no  further  consideration  has  been 

given  to  it. 

2 . 3 . 2  QuantuwMechanical  Theories 

Fully  quantuwmechanical  calculations  of  vibrational  and  rotational 

energy  transfer  have  also  been  abundant  in  recent  literature. 39,40,54-56,68 

A s  the  opposite  extreme  to  classical  treatments,  they  contain  a  complete 

description  of  the  energy  deposition  and  provide  an  exact  basis  for  comparison 

with  more  approximate  methods.  The  difficulties  associated  with  a  full  quan- 

tal  formulation  lie  mainly  in  the  mathematical  and  numerical  requirements  to 

obtain  a  solution.  The  radial  motion  of  the  system  is  governed  by  a  linear 

second-order  differential  equation  with  at  least  two  independent  variables. 

A numerical  solution  involves  matrix  manipulation  and  quadrature  integration. 

While  general  methods  for  dealing  with  these  numerical  aspects  have 
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become  highly  developed,  their  incorporation  into a complete  algorithm  for  the 

collision  process  is  not  an  inviting  task.  Even  putting  that  inconvenience 

aside,  the  experience  of  has  shown  that  the  computing  time  neces- 

sary  to  reach a complete  solution  varies  as  the &e of  the  number  of  coupled 

molecular  internal  states  included  in  the  calculation.  For  calculations 

involving  both  vibrational  and  rotational  states,  this  cubic  dependence  has 

been  the  primary  factor  restricting  comprehensive  studies  of  the  energy  trans-, 

fer  for  all  but a few  special  molecules  like H2. To impose  similar  limita- 

tions  on  this  study  would  yield  results  little  different  from  previous  work. 

Several  approximations  to  the  quantal  formulation  have  been  devised  which 

allow  solutions  to  be  obtained  with  less  effort.  The  recently  developed  semi- 

quantal  method49 , 50 is  one  example,  but a much  older  and  more  easily  applied 

approximation  is  the  "distorted  wave"  approach  first  proposed  by  Zener3,26  and 

later  reformulated  by  Jackson  and M~tt.~'~ We  briefly  mention  the  distorted 

wave  approximation  here  to  show  that  it  too  is  not  the  best  choice  for  the 

purposes  of  this  study  even  though  it  retains  much  of  the  "exactness1'  of a 

full  quantal  solution.  The  approximation  has  been  applied  in  the  past  both  to 

collinear  collision  models42  and  to  three-dimensional  rotational  models. 43 

Generally,  it  is a perturbation  method  that  may  be  carried  to  arbitrary  order, 

but  its  greatest  advantage' is realized by retaining  just  the  first-order  term. 

As with  all  first-order  perturbation  solutions,  the  results  are  accurate  only 

when  transition  probabilities  and  interactions  between  nonadjacent  states  are 

small. This study  of  excited-state  transitions,  in  which  single-quantum 

transitions  are  expected  to  be  large  and  multiple-quantum  transitions  to  be 

important,  would  then  require  at  least a second-order  theory  for  accuracy. 

The  distorted  wave  approximation  is  therefore  not  an  attractive  choice  here. 
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2 . 3 . 3  Semic la s s i ca l   Co l l i s ion  Model 

A semiclassical   or  "impact-parameter" method f o r   t r e a t i n g   t h e   c o l l i s i o n  

dynamics  has several attractive f e a t u r e s   t h a t  promote i t s  s e l e c t i o n  as t h e  

p r imary   t heo re t i ca l   app roach   i n   t h i s   s tudy .   Fo r   one ,  i t  r e t a i n s  a l l  t h e  

quantum-mechanical  aspects of e n e r g y   t r a n s f e r   w i t h i n   t h e   i n t e r n a l  states of 

the   molecule   tha t  are a b s e n t   i n  a classical t reatment   while   avoiding most  of 

t he   ma themat i ca l   d i f f i cu l t i e s   a s soc ia t ed   w i th  a f u l l   q u a n t a l   s o l u t i o n .   I n   t h e  

semiclassical approximat ion ,   the   Schrodinger   equa t ion   descr ib ing   the   co l l i s ion  

may be   reduced   to   th ree ,   coupled ,   t ime-dependent ,   f i r s t -order ,   l inear ,   d i f fe r -  

e n t i a l   e q u a t i o n s  - one  describing  the  molecular  wave-function  dynamics  and two 

classical  t r a j e c t o r y   e q u a t i o n s   f o r   t h e  relative motion  of  the  incident  par- 

t icle.  When the   t r a j ec to ry   and  wave equat ions are uncoupled ,   the   t ra jec tory  

equat ions may be   exac t ly   i n t eg ra t ed   ana ly t i ca l ly   fo r   co l l i nea r   encoun te r s  and 

approximate ly   for   spher ica l ly   symmetr ic   in te rac t ions .   Clear ly ,   these   reduc-  

t ions  re lax  the  numerical   requirements   considerably.   Furthermore,   the   reduc-  

t i o n   t o   o b t a i n   f i r s t - o r d e r   d i f f e r e n t i a l   e q u a t i o n s   a f f o r d s  a second,  and  per- 

haps more s i g n i f i c a n t ,   a d v a n t a g e   t o   t h e  semiclassical formulat ion  because  the 

computation t i m e  t h e n   v a r i e s   w i t h   t h e  square of   t he  number of  coupled  channels, 

making f e a s i b l e   t h e   c a l c u l a t i o n   o f  much l a r g e r  sets than  might  be  considered 

with a f u l l   q u a n t a l  method. 

From ano the r   v i ewpo in t ,   t he   ab i l i t y   t o   s epa ra t e   t he   mo t ion   o f   each   co l l i -  

s i o n   p a r t n e r   i n  a semiclassical formula t ion   a l lows   ana ly t ic   so lu t ions   to   be  

o b t a i n e d   f o r   t h e   f i n a l  state of  the  molecule i f  some further  approximations 

are made.  The usefu lness   o f   these  more approximate   ana ly t ic   so lu t ions  was 

d i scussed   i n   chap te r  1, bu t   t he i r   accu racy   r equ i r e s   va l ida t ion .  The val ida-  

t i o n  is done  most  convincingly  by  comparing  the  analytic  predictions  with 
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numerical  solutions in which  the  trajectories  are  also  obtained  classically. 

By choosing  a  general  semiclassical  approach,  such  comparisons  may be included 

as  part  of  the  results  of  this  study.  However,  before  a  classical  description 

of the  incident  particle  motion  can  be  justified,  several  restrictive  criteria 

must  be  met.  The  following  section  delineates  the  pertinent  criteria  that 

apply  to  vibratioaally  inelastic  collisions. 

2.4 Basic  Criteria  for  the  Semiclassical  Approximation 

A detailed  derivation  of  the  semiclassical  equations  of  motion  is  pre- 

sented  in  appendix B. In  this  section,  we  shall  discuss  only  the  general  cri- 

teria  necessary  to  justify  a  semiclassical  formulation. 

The  conditions  for  the  validity of semiclassical  theory  have  been  exam- 

ined  for  numerous  applications  in  the  past  by  many  authors;  but  recently, 

Delos et a l .  6 9  9 70 reported  a  careful  and  detailed  reexamination  that  revealed 

some  of  the  implications  and  restrictions  of  a  semiclassical  collision  model 

in  much  greater  depth.  They  show  that  the  classical  trajectory  equations  may 

be  obtained  in  two  fundamentally  separate  ways:  one  based  on a classical 

wave-packet  description  involving  the  correspondence  principle,  and  one  that 

makes  no  reference  to  a  conventional  classical  picture  but  is  based  on  an 

extension of the  usual WKB approximation.  Their  work  was  motivated  by  the 

observation  that  semiclassical  models  work  well  even  at  collision  energies  too 

low to  justify  a  localized  wave-packet  description  of  the  incident  particle. 

Indeed,  they  found,  by  comparison  with  the  second  method  for  obtaining  the 

same  classical  equations,  that  criteria  based  on  the  localized  wave-packet 

concept  were  overly  restrictive.  Specifically, in the  classical  wave-packet 

picture,  the  correspondence  principle  leads  to  the  classical  trajectory  equa- 

tions  only  if 
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(X/L)1/2 << 1 (2 8 )  

where X is  the  de  Broglie  wavelength  and L is  the  range  of  the  collision 

interaction. On the  other  hand,  the WKB approach  yields  the  classical  trajec- 

t o r y  equations  by  requiring  the  weaker  condition 

X/L << 1 (2 .9 )  

Thus,  Delos et aZ. conclude  that,  even  when  a  classical  picture  involving  the 

correspondence  principle  is  not  justified,  the  classical  trajectory  equations 

may still  produce  a  reasonable  description  of  the  final  molecular  state.  They 

suggest  that  the  classical  trajectory  equations  are  implicitly  more  fundamen- 

tal  to  the  collision  dynamics  than  just  in  the  correspondence  limit.  The  com- 

parisons  of  semiclassical  and  quantum-mechanical  collision  models  for  harmonic 

oscillators  by  Rapp  and  Kassa14’  and for anharmonic  oscillators  in  chapter 4 

support  these  conclusions.  For  example,  in  chapter 4 ,  typical  threshold  col- 

lision  energies  for  a  single  vibrational  quantum  transition  correspond to 

h / L  % 1, which  violates  even  equation (2.9), and  yet  the  semiclassical  and 

full  quantal  predictions  appear  identical.  Delos et aZ. warn  that  by  the  same 

rule,  however,  a  classical  interpretation  of  the  computed  oscillator  dynamics 

during  intermediate  times  in  the  collision  should  not  be  given  unwarranted 

value  for  conditions  outside  equation (2.8). Since  all  comparisons  to  date 

have  examined  only  the  predictions of final  oscillator  states,  no  conclusions 

can  be  inferred  about  intermediate  times.  These  warnings  suggest  some  caution 

when  coupling  the  classical  trajectory  to  the  molecular  dynamics,  for  example. 

Delos e t  aZ. continue  by  showing  that  equation ( 2 . 9 )  is  not the only  cri- 

terion  necessary  to  validate  a  semiclassical  theory.  They  state  two  further 

requirements  that,  in  combination,  demand  that  the  elastic  collision  trajec- 

tory  for  all  channels  (internal  molecular  states)  be  approximately  the  same. 
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These  criteria  are  most  restrictive  when  several  potential  energy  surfaces  are 

considered  and  when  the  system  is  allowed  to  cross  from  one  surface  to  another; 

but  the  applications  here,  where  reactive  collisions  and  electronic  transi- 

tions  are  not  considered,  require  only a single  interaction  surface.  These 

additional  criteria  then  reduce  to  the  stipulation  that  the  difference  in 

diagonal  matrix  elements  defined  by  the  instantaneous  state  of  the  molecule 

and  by  the  interaction  potential  be  small.  Thus,  if  VLk  is  the  instantaneous 

diagonal  matrix  element  for  state k, the  criteria  requiring  similar  elastic 

trajectories  may  be  expressed  by 
~ .. . 

(2.10) 

With  simple  exponential  interactions  of  the  type  most  commonly  used  (see  ch. 3 

for  examples), VLk varies  with k primarily  as a result of vibrational 

anharmonicity.  When  the  molecule  is  treated  as a harmonic  oscillator  and  the 

interaction  potential  is  also  linear  in  the  oscillator  coordinate, VLk is 

identical  for  all k and  equation  (2.10)  is  satisfied  precisely.  Conversely, 

we  can  expect  the  results  of a semiclassical  treatment of anharmonic  oscil- 

lators  with  nonlinear  interactions to compare  differently  with  their  full 

quantal  counterparts  than  found  in  similar  comparisons  using  harmonic  oscil- 

lators.  On  the  other  hand, V' varies  only  weakly  with k for  most  molecules 

because  the  vibrational  anharmonicity is generally  small.  Hence a semiclassi- 

cal  model  of  anharmonic  oscillators  can  still  be  expected  to  retain a large 

measure of accuracy  provided  the  differences vAn - vLk remain  small. 

kk 

With  the  preceding  criteria  in  mind,  we  shall  adopt a semiclassical  for- 

mulation  throughout  this  study.  However,  since  the  criteria  given  by  equa- 

tions (2.9) and (2.10) are  not  quantitatively  explicit  in  establishing  the 
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. range  of  collision  parameters  and  molecular  properties  that  may  be  suitably 

applied  in  such a method,  much  more  explicit  statements  regarding  the  validity 

of a semiclassical  collision  model  will  be  obtained  from  the  results  in  chap- 

ter 4 .  Before  proceeding  with  numerical  solutions,  however,  the  intramolecu- 

lar  potential  determining  the  molecular  dynamics  and  the  collision  interaction 

potential  determining  the  perturbing  forces  on  the  molecules  must  first  be 

modeled.  Chapter 3 describes  these  potential  models  and  the  considerations 

leading  to  them. 
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CHAPTER  3 

INTRAMOLECULAR AND COLLISION-INTERACTION  POTENTIALS 

A rudimentary  aspect  of  any  collision  model  is  the  description  of  forces 

acting  between  elements of the  system. In this  study,  three  separate  nuclei 

constitute  the  system  and, in principle,  the  forces  acting on any  one  of  them 

depend  on  the  relative  positions  of  all  three.  In  practice,  however,  a  self- 

consistent  potential  surface  is  rarely  known,  except  for  the  simplest  systems. 

Instead,  the  potential  surface is usually  constructed  in  a  semiempirical 

manner  using  simpler  concepts. To that  end, we follow  the  conventional  tech- 

nique  of  considering  only  independent  pairwise  interactions.  The  potential 

surface  is  then  separable  into  three  additive  components,  each  dependent  on 

only  the  distance  between  two  nuclei. Two of  the  components  include  the  inci- 

dent  particle  as  one  nucleus  and  are  classified  here  as  "collision-interaction 

potentials."  The  third  component  is  between  the  two  bound  molecular  nuclei 

and  termed  here  the  "intramolecular  potential."  Both  types  are  modeled  indi- 

vidually  below. 

3.1  Intramolecular  Potential 

Since  only  pairwise  interactions  are  considered,  the  intramolecular 

potential  is  independent of the  disturbance  to  the  molecule  brought  by  a  col- 

lision.  The  potential  model  is  therefore  based on the  spectral  properties of 

an  undisturbed  molecule. 

3.1.1  Vibrational  Anharmonicity 

The  importance  of  vibrational  anharmonicity  in  the  intramolecular  motion 

has  been  emphasized  several  times  in  previous  chapters  and  its  inclusion  has 
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been   s t a t ed  as a bas ic   fea ture   o f   th i s   s tudy .   Anharmonic i ty  w i l l  manifest  

i t s e l f   i n   t h e   m o l e c u l a r  model  by the  appearance  of  second-  and  higher-order 

terms i n   t h e   e x p r e s s i o n   f o r   v i b r a t i o n a l   e i g e n e n e r g i e s .  A minimum example is 

then 

2 
Ev/6 = we (v + $) - uexe (v + -$) 

The f i r s t  term in   equat ion   (3 .1)  is t h e   f a m i l i a r   r e s u l t   o b t a i n e d   f o r  a harmonic 

o s c i l l a t o r   p o t e n t i a l   o f   t h e  form 

I vo(r) = 7 Fcowe(r - re12 (3.2) 

where po is the  reduced mass of t h e   o s c i l l a t o r ,  r i s  t h e   i n t e r n u c l e a r  

separat ion,   and re is  t h e   e q u i l i b r i u m   s e p a r a t i o n .  Numerous p o t e n t i a l  func- 

t i o n s  w i l l  produce  an  anharmonic  term  identifiable  with  the  second term i n  

equat ion  (3 .1) .   In   fact ,   any  potent ia l   funct ion  with a higher-order depen- 

dence  on r - re than  equation  (3.2) w i l l  do.  However,  two h i g h l y   d e s i r a b l e  

a d d i t i o n a l   f e a t u r e s  of t h e   p o t e n t i a l   f u n c t i o n  are (1) t h a t  i t  r e a l i s t i c a l l y  

r ep resen t  a real molecule   for  a l l  sepa ra t ions   t o   d i s soc ia t ion   and  (2) t h a t  i t  

be  of  an  analytically  convenient  form.  Again,  several p o t e n t i a l   f u n c t i o n s  

have  been  proposed  that f i t   these   requi rements   ( see   re f .   71 ,   ch .  5 ,  f o r  

examples). One example t h a t   h a s   r e c e i v e d   p e r h a p s   t h e   g r e a t e s t   a t t e n t i o n   s i n c e  

i ts  conception is that   proposed by  Morse72 i n   t h e  form 

Vo(r) = Do e c 3 -2a(r-re) -a (r-re) - 2e (3.3) 

In   the  absence  of   molecular   rotat ion,  Morse obtained  eigenenergies  approxi- 

mated  by equation  (3.1)  plus  higher-order terms t h a t  are c l e a r l y   n e g l i g i b l e  

f o r  a l l  diatomic  molecules. The p o t e n t i a l   c o n s t a n t s  are r e l a t e d   t o   t h e   o s c i l -  

lator  frequency  and  anharmonicity by 

Do = hwe2/4wexe (3.4) 
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where Y,,(O,$) is a normalized  spherical  harmonic  function  in  the  polar 

angles 0 and 4 ,  then  an  analytic  solution  to  the  radial  wave  equation is 

obtained for integer  values  of v given  by 

where z = k ' e  -a  (r-re) 

N, = [ab'r(v + l)/r'(k' - v)I1l2 J 
and L,(z) is  the  Laguerre  polynomial73 b 

V 

(3.7) 

m= 0 

b' = k' - ZV - 1 (3.10) 

The  Morse  potential is not  as  accurate  as  other  more  recent  models  (e.g., 

the  function  proposed  by  Hulburt  and Hir~chfelder~~), but  its  analytic  conven- 

ience  has  made  its  appearance  in  the  literature  seemingly  second  in  popularity 

only  to  the  harmonic  oscillator.  Figure  3.1  illustrates a comparison  of  the 

Morse  function  for  the  hydrogen  molecule  with a more  accurate  numerical 
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Figure 3.1- In t r amolecu la r   po ten t i a l   func t ions   fo r  H2 ( taken  f rom  ref .  74, 
based  on  ref.  75). 

r ep resen ta t ion   ob ta ined  by t h e  Rydberg-Klein-Rees  of  analyzing 

spec t roscopic   in format ion .  Hydrogen is an  example i n  which  the Morse p o t e n t i a l  

appears a t  i t s  worst   because  of  the  high  degree  of  anharmonicity  associated 

with H2. Figure  3 .1   suggests   that   the  Morse p o t e n t i a l  model should  reproduce 

the   mo lecu la r   p rope r t i e s   accu ra t e ly   fo r   v ib ra t iona l   ene rg ie s  a t  least up t o  

E, 5 D0/2. However, a comprehensive  comparison  for H2 is d i f f i c u l t   b e c a u s e  

h i g h - l y i n g   v i b r a t i o n a l   e n e r g i e s   i n  H2 are n o t   a v a i l a b l e .  They are a v a i l a b l e  

f o r  CO, however,  where  they  have  recently  been  measured up t o  v = 37 using 

laser-spectroscopy  techniques.  77 9 78  Figure  3 .2   compares   vibrat ional   energies  

of  C0;obtained  from  the laser measurements  and  defined by terms up t o   s i x t h  

order ,   wi th   the  second-order  Morse expression. A s  expected,  values  of 

E, 5 D0/2 are reproduced  by  the Morse funct ion  with  reasonable   accuracy.  We 

should  note  a t  t h i s   p o i n t ,  however,   that   eigenenergies are not  as s e n s i t i v e   t o  

v a r i a t i o n s   i n   t h e   i n t r a m o l e c u l a r   p o t e n t i a l  as are t h e  wave f u n c t i o n s   o r   t h e i r  

o v e r l a p   i n t e g r a l s   u s e d   i n   c o l l i s i o n   t h e o r y .  Thus the  measure  of  accuracy 
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Figure  3.2.-  Vibration  eigenenergies  of CO (Do = 11.108 eV). 

suggested  by  figures  3.1  and  3.2  is  not  entirely  representative  of  the  corre- 

sponding  accuracy  given  to a collisional  model.  Nevertheless,  in  view  of  the 

other  inaccuracies  inherent  in  the  collision  model,  the  Morse  function  has 

been  adopted  here  as a sufficiently  realistic  intramolecular  potential  model. 

3.1.2  Vibration-Rotation  Coupling 

A remaining  question  regarding  the  molecular  model  pertains  to  its  rota- 

tional  characteristics.  In a classical  picture,  the  vibrational  and  rota- 

tional  motion  of  the  molecule  are  clearly  coupled. A quantum-mechanical 

description of the  molecule  will  produce  corresponding  coupling  terms  in  the 

wave  functions  and  eigenenergies  associated  with  vibration  and  rotation.  The 
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task  is  to  determine.the  degree  of  coupling  that  must  be  retained  for  the 

purposes  of  this  study. 

Pekeris79  has  solved  the  steady-state  radial  wave  equation  for  a  Morse 

potential  with  the  rotational  terms  included.  His  results  can  be  reformulated 

to  better  show  the  influence of vibration-rotation  coupling  in  the  following 

way: to second  order,  the  radial  wave  function  obtained  by  Pekeris is  similar 

in  form  to  equation  (3.7).  Part  of  the  difference  lies  in  the  parameters,  b' 

and kt, which  depend  now  on  the  rotational  quantum  number R. Denoting  the 

R-dependent  parameters  as bR and kg, they  are  related  to  the  values b' and 

k'  given  previously  for  a  nonrotating  molecule by 

kR = k'(1 + cR)ll2 

where 

and 

bR = kg(: 1;) - 2v - 1 

cR = AR(3/are - 1) 

ci = AR(2 - 3/are) 

AR = R(R + 1)2h2/(poare3D0) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

In  this  extended  notation,  the  radial  wave  function  becomes 

I 

= NvR e 
- A g ~ / 2  (A,~)~JJ~L;JQA~Z) (3.15) 

in  which z = k  e 

equation  (3.15)  shows,  the  wave  function  is  distorted  by AR in  the  coordi- 

nate 2. 

-a(r-re) as  before  and  Nva = [abRT (v + 1) / r  (kg - v) ] ll2. As 

To evaluate  the  effect  of  vibration-rotation  coupling  on  the  molecular 

model,  equation  (3.15)  must  be  used  in  place  of  equation  (3.7)  when  computing 
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the   appropr ia te   over lap   in tegra ls   appear ing   in   the   co l l i s ion   theory   formula-  

t ion.   Obviously,   that   k ind  of   evaluat ion  can  be made o n l y   i n   r e t r o s p e c t   a f t e r  

t he   co l l i s ion   t heo ry   has   been   fo rmula t ed   i n   de t a i l .  However, a t  t h i s   p o i n t ,  

w e  are a t  least a b l e   t o   i n d i c a t e   t h e   e x t e n t  of the  coupl ing by  computing t h e  

magnitudes  of   the   correct ions  to   b '   and  k '   and  the  dis tor t ion  of   the wave 

funct ion  introduced by AR. Choosing  the  propert ies   of  CO as an  example  and 

de f in ing  R 5 40 as the   r ange   o f   i n t e re s t ,  we f i n d   t h a t ,   f o r  R = 40, 

kR/k '  = 0.997,  bR = 0.96k - 2~ - 1, A% = 1.05 

The o v e r l a p   i n t e g r a l s  are s e n s i t i v e   t o  small changes i n   t h e  wave func t ion  so 

t he   e f f ec t   o f   t hese  small co r rec t ions  is not   c lear ;   but   one  can see t h a t   t h e  

inf luence   o f   ro ta t iona l   coupl ing  i s  not  a major   aspect   of   the   vibrat ional  

motion. 

The i n i t i a l   c h o i c e   o f  a method fo r   desc r ib ing   t he   mo lecu la r   p rope r t i e s   i n  

t h i s   s t u d y  w a s  guided by a less sens i t ive   bu t   read i ly   eva lua ted   measure   o f   the  

v ibra t ion- ro ta t ion   coupl ing .  The eigenenergy terms assoc ia ted   wi th   v ibra t ion-  

ro t a t ion   coup l ing  were compared wi th   t hose   r e su l t i ng  from vibra t iona l   anhar -  

m n i c i t y .  The ob jec t ive  w a s  to   dec ide   i f   v ibra t ion- ro ta t ion   coupl ing   should  

be  included  to   maintain a consis tent   degree  of   accuracy  in   the  e igenenergy 

expression.  The energy  expression  corresponding  to   the  second-order   radial  

so lu t ion   g iven  by equation.  (3.15) w a s  shown by Pekerisr l9   to   be 

We can  then  ask  for   what   values  of R is  
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Again ,   us ing   spec t roscopic   cons tan ts   for  CO, t h e   r o t a t i o n a l   c o u p l i n g  terms 

equal  or  exceed  the  anharmonic terms when E(E + 1) 2 623[v + (1 /2 ) ] .  The fo l -  

lowing   tab le  lists some sample  values. 

TABLE 3.1.- ROTATIONAL  QUANTUM  STATES WITH SECOND-ORDER  CORRECTIONS 
COMPARABLE TO THE  ANHARMONIC  CORRECTION  FOR CO 

0 
1 
2 
5 

10  
20 

17 
30 
39 
58 
80 

113 

0.006 
.009 
.012 
.031 
.062 
.124 

Thus, f o r  R 1 40,   the  second-order   rotat ional  terms are comparable  only  with 

anharmonic terms f o r   t h e   f i r s t  few v i b r a t i o n a l  states. The t h i r d   e n t r y   i n  

t ab le   3 .1  i s  a measure of the   anharmonic i ty   cor rec t ion   tha t  may be compared 

wi th   un i ty .   Fo r   t he   f i r s t  few v i b r a t i o n a l  states, i t  is  much less than   un i ty  

and w e  may therefore   conclude   tha t ,   whi le  a completely  consistent  molecular 

model should   conta in   v ibra t ion- ro ta t ion   coupl ing  terms, t h e i r   i n f l u e n c e   o n   t h e  

molecular  dynamics i s  no t   expec ted   t o   be   l a rge   i n   any  case. A t  t h e  time t h e  

molecular model w a s  fo rmula t ed   fo r   t h i s   s tudy ,   t he  small amount of  added com- 

p lex i ty   in t roduced  by the   v ibra t ion- ro ta t ion   coupl ing  terms appeared  to  be 

g r e a t e r  and a Morse-oscillator/rigid-rotor d e s c r i p t i o n  w a s  chosen t o   e n s u r e  

ana ly t ic   p rogress .  The eigenenergies  are then  expressed by 

EVR = me(. + i) - mexe (v + +) 2 + E(E + l)Be 
(3.17) 

and t h e   s t e a d y - s t a t e   r a d i a l  wave funct ion is given  by  equation  (3.7).   In 

re t rospec t ,   the   coupled   express ions  of Pekeris  given  by  equations  (3.15) 

and (3.16)   would  have  required  addi t ional   computat ional   effor t ,   but   they do 

not   increase  the  complexi ty  of t he   fo rmula t ion   subs t an t i a l ly .  
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3.2 Collision-Interaction  Potential 

The  outcome  of  any  scattering  event  depends  strongly  on  at  least  some 

features  of  the  interaction  potential;  yet  the  shape  and  magnitude  of  interac- 

tion  potentials  are  poorly  known  for  all  but  a  relatively  few  simple  cases. 

The  potentials  between  elastically  scattered  atoms  are  generally  well  estab- 

lished  from  both  theory  and  atomic-beam  experiments,  but  the  interactions 

influencing  inelastic  collisions  involving  diatomic  molecules  are  still  an 

active  subject  for  research  and  computation.  The  topic  has  been  discussed 

extensively  in  relation  to  the  transport  properties  of  gasese0  and,  more 

recently,  in  relation  to  scattering  events.81  To  circumvent  the  complexity  of 

the  subject, we develop  in  this  section  an  empirical  model  of  the  interaction 

forces  based  on  the  general  nature  of  the  interaction. 

The  nature  of  the  interaction  forces  depends  greatly  on  the  modes  of 

energy  transfer  and  on  the  internal  energy  states  that  participate  in  the 

collision  dynamics.  Here we are  interested  only  in  nonreactive  interactions 

between  collision  partners  in  their  ground  electronic  states.  Even  then, ab 

i n i t i o  calculations  for  three-body  systems  of  the  type  considered  are  diffi- 

cult  and  still  incomplete  for  even  the  simplest  system,  H2-H  (e.g.,  ref.  82b). 

The  Born-Oppenheimer  separation  of  electronic  and  nuclear  motion  is  generally 

used,  but  the  complexity  associated  with  electronic  coupling  between  charge 

clouds  of  three  nuclei  has  limited  present  accomplishments. A few  cases  'have 

been  obtained  using  "self-consistent  field  theory"  where  the  number  of  elec- 

trons  is  a  minimum  (H2-H  (ref. 82) , H2-He  (refs.  83, 84) , H2-Li+  (ref.  85)) , 

but  similar  calculations  for  heavier  nuclei  are  either  less  rigorous  (HF-HF 

(ref. 86)) or  not  available.  Experimental  determinations  appear  to  be 

equally  difficult.  The  interaction  potential  cannot  be  measured  directly  but 
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must  be  implied  from  some  collisionally  dependent  observable  property  in  which 

the  potential  function is only  implicitly  contained.  The  uniqueness  of  the 

,potential  thus  determined  is  often  in  serious  doubt  and  the  accuracy of its 

details  are  consequently  diminished.  Generally,  the  collision-interaction 

potential,  however  obtained,  appears t o  be  the  greatest  source of uncertainty 

in  the  calculation  of  vibrational  inelastic  collision  dynamics  for  most  mole- 

cules  larger  than H2. 

Despite  our  inability  to  accurately  define  the  interaction  potential,  we 

can  at  least  describe  its  qualitative  features  with  some  confidence. To sim- 

plify  the  description,  the  potential  may  be  separated  into  two  major  compo- 

nents:  an  average  spherical  component  that  depends  only  on  the  separation of 

the  molecular  mass  center  and  the  incident  particle  and  an  anisotropic  compo- 

nent  that  accounts  for  variations  with  the  molecular  orientation  relative to 

the  direction of the  incident  particle  location.  Figure 3 . 3  is  a  qualitative 

sketch of both components. 

SPHERICAL AVERAGE 
EQUIPOTENTIAL 

ANISOTROPIC 
EQUIPOTENTIAL 

v(x)  
(b) Anisotropic  features. 

X 

(a)  Spherical  features. 

Figure 3.3- Characteristics  of  nonreactive  intermolecular  potentials. 
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3.2.1  Spherical  Features 

The  spherical  component  may  be  further  divided,  though  somewhat  arbitrar- 

ily,  into  several  types  of  forces.  They  are  commonly  referred  to  as  (a)  short- 

range  repulsive  forces  that  occur  principally  when  two  nuclei  are  close  enough 

for  their  electronic  charge  clouds  to  overlap,  (b)  long-range  attractive 

forces  that  result  from  large  separations  in  which  the  charge  distributions of 

each  nucleus  are  independently  distorted,  and  (c)  intermediate  forces  that 

simply  refer  to  the  transition  region  between  the  preceding  extremes. 

The  short-range  forces  do  not  lend  themselves  easily  to  theoretical s i p  

plification  but,  fortunately,  the  collision  dynamics  of  vibrationally  inelastic 

events  are  not  particularly  sensitive  to  their  precise  shape.  Usually,  the 

short-range  force gradient at  closest  approach  is  the  single  most  important 

feature  to  the  collision  dynamics.  Generally,  theoretical  attempts  to  model 

the  short-range  forces  have  led  to  sums  of  terms  like 

VSR % A ( x )  e -x/L (3.18) 

where  x  is  the  separation  distance, A(x)  is  slowly  varying  in x, and L 

is  a  constant  range  parameter.  Commonly, A is  also  taken  as  a  constant  and 

effective  values  of  A  and L are  deduced  from  experiment  by  simple  comparison 

with  predicted  results.a7.  The  results  of ab-init io calculations  have  also 

been  reproduced  surprisingly  well  by  equation  (3.18)  in  interactions  between 

two  atoms,  but  combination  rules  for  cases  where  three  interacting  nuclei  are 

present  are  still  a  topic  of  discussion. 

Long-range  attractive  forces,  on  the  other  hand,  are  more  easily  approxi- 

mated  from  well-founded  physical  arguments.  At  separations  large  compared  to 

the  intranuclear  separation  of  the  molecule,  the  molecule  appears  as  an  inde- 

pendent  multipole  with  some  polarizability.  The  resulting  multipole 
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interaction  forces  are  the  same  both  in  quantum-mechanical  and  classical 

treatments  witk  the  general  result  appearing  as  a  series  of  terms in the form 

(3.19) 
n 

Often  the  dominant  terms  are  induction  forces  (dipole-induced  dipole)  and 

London  dispersion  forces  (similar  to  dipole-induced  dipole),  which  both  vary 

as 

v = -c/x6  (3.20) 

The  single  term  represented  by  equation  (3.20)  has  commonly  been  used  to 

approximate  the  influence of long-range  forces. 

Numerous  empirical  representations  for  the  entire  potential  have  emerged 

from  considerations  similar  to  those  just  described. An immediate  choice 

would  appear  to  be  the  Buckingham  potential 

V B = A e  -x/L - c/x= (3.21) 

but  this  form  has  the  unrealistic  property  of  reaching  a  maximum  for  small  x 

and  becoming  infinitely  negative  as x + 0.  A more  realistic  formula  that 

emphasizes  the  same  long-range  force  dependence  is  the  well-known  Lennard- 

Jones  12-6  potential: 

(3.22) 

The  zero-potential  separation, po, explicitly  appearing  in  equation  (3.22), 

provides a useful  measure  of  the  equivalent  "hard-sphere"  radius  that  will  be 

required  in  the  collinear  collision  model  application  described  in  chapter 5 .  

Similarly,  the  well  depth, D, is  also  an  explicit  parameter. The Lennard-Jones 

potential  gained  early  popularity  in  the  analysis  of  transport  properties  in 

gases  and  its  effective  constants, po and D, have  been  evaluated  for  many  gas 
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mixtures  using  viscosity  data  and  virial  coefficients. 8o  Unfortunately,  the 

mathematical  form  of  equation  (3.22)  is  inconvenient  for  the  calculation of 

interaction  overlap  integrals  in  a  collision  model  where  the  oscillator  is 

treated  quantum  mechanically. For that  reason,  we  shall  seek  a  more  conven- 

ient  representation,  but we can  use  the  Lennard-Jones  potential  as  a  basis  for 

comparison. 

A potential  representation  consisting  of  exponential  terms  is  particularly 

convenient  in  the  mathematics of anharmonic  ,oscillators.  One  such  representa- 

tion  is  the  Morse  potential 

V M = D e  -(x-xo)/L - ZD e - (x-xo)  /2L (3.23) 

where  the  separation  at  the  potential  minimum,  xo,  is  related to the  Lennard- 

Jones  zero-potential  separation  by x. = 2lI6pO.  Equations  (3.22)  and  (3.23) 

can  then be made  to  yield  similar  potentials  in  the  region  of  the  potential 

well  by  a  suitable  choice  of  L.  However,  the  shape  of  the  potential  well  is 

usually  not  important  to  the  collision  dynamics  at  energies  sufficient  to 

induce  vibrational  transitions.  The  threshold  energies  for  vibrational  tran- 

sitions  are  near E = hue = 0.2 to 0.5 eV, while  apparent  well  depths  for 

many-electron  molecules  like N2, C O Y  02, etc.,  are  typically  D 2 0.01 eV. 

Thus,  E/D >> 1  in  most  cases  of  interest  and  the  influence  of  the  potential 

well  shape  is  negligible.  Instead,  the  choice  of  range  parameter, L, will  be 

dictated  by  the  greater  necessity  for  properly  matching  the  potential  gradient 

where V 2 E.  This  latter  requirement  for  gradient  matching  suggests  that, 

unless  the  potential  shape  is  correct  in  the  region  of  short-range  forces, 

the  effective  range  L  will  depend  on E. Later  comparisons  of  theoretical 

and  experimental  rate  coefficients  will  show  that  such  behavior  is  obtained 

49 



and t he   t he rma l   r ange   o f   app l i cab i l i t y   fo r  a given set o f   po ten t i a l   pa rame te r s  

is correspondingly  l imited.  

Arguments similar t o   t h o s e   r e g a r d i n g   t h e   p o t e n t i a l  w e l l  region  a l low  us  

t o   f u r t h e r   s i m p l i f y   t h e   i n t e r a c t i o n   p o t e n t i a l   r e p r e s e n t a t i o n   ( f o r   t h e   p u r p o s e s  

of t h i s   s t u d y )  by a l so   neglec t ing   the   long-range   forces .  The r o l e   o f   t h e  

long-range attractive f o r c e s  i s  bas ica l ly   twofold   dur ing  a c o l l i s i o n  event - 

they accelerate the   i ncoming   pa r t i c l e  by an amount r e l a t e d   t o  D/E and  they 

induce   ear ly   t rans i t ions   be tween levels whose  energy  spacings are the   o rder   o f  

D. Only r o t a t i o n a l   t r a n s i t i o n s   w i t h i n  a g iven   v ib ra t iona l  s ta te  are a f f e c t e d  

i n  t h e  lat ter r o l e .   I n   t h e   f i r s t   r o l e ,   t h e   e f f e c t   o f   l o n g - r a n g e   f o r c e s  w i l l  

be  apparent  only a t  energies   very  near   threshold  and  hence  only a t  very low 

temperatures. However, t h i s   s t u d y  is  n o t   d i r e c t e d  a t  low-temperature  applica- 

t i o n s   i n   p a r t i c u l a r .   I n   t h e i r   s e c o n d   r o l e ,   l o n g - r a n g e   f o r c e s  would be impor- 

tant i f  w e  were in t e re s t ed   i n   pu re   ro t a t ion - t r ans l a t ion   ene rgy   t r ans fe r   o r   i n  

t h e   d e t a i l e d   f i n a l   r o t a t i o n a l  state of   the   molecule   a f te r  a co l l i s ion   i nvo lv -  

i n g  V-R-T ene rgy   t r ans fe r .  We s h a l l   f i n d ,  however, t h a t   t h e   n e t  rate of  vibra- 

t i ona l   ene rgy   t r ans fe r  i s  n o t   p a r t i c u l a r l y   s e n s i t i v e   t o   t h e   r o t a t i o n a l  dynam- 

ics  d u r i n g   t h e   e a r l y   o r  l a te  s tages   o f   the   encounter .  The r o t a t i o n a l  s ta te  of  

the   molecule   having   the   g rea tes t   in f luence  on i ts  f i n a l   v i b r a t i o n a l   c o n d i t i o n  

w i l l  b e   t h e   r o t a t i o n a l  s ta te  occupation  occurring a t  t h e  t i m e  o f   c lo ses t  

approach when the   shor t - range   forces  are dominant.  Thus, w e  c a n   j u s t i f i a b l y  

neglec t   the   long-range   forces   en t i re ly   for   these   purposes   and   adopt   the   s imple  

and a n a l y t i c a l l y   c o n v e n i e n t   r e p u l s i v e   p o t e n t i a l  

V = A e  -x/L ( 3 . 2 4 )  

The e f f e c t s   o f   t h e   p o t e n t i a l  w e l l  on v ib ra t iona l   ene rgy   t r ans fe r   have  

been   i nves t iga t ed   i n   g rea t e r   de t a i l   by   o the r s .88 -90   The i r   f i nd ings   suppor t  
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the  conclusion  that  the  well  may  be  neglected  when  E/D  or  hwe/D >> 1. 

There  are  examples,  of  course,  where  the  well  depth  is  larger  (e.g.,  for 

H,-Li+, hwe/D = 0.2). For  those  cases,  the  entire  interaction  potential  must 

be accurately  represented. 

3.2.2 Anisotropic  Features 

The  anisotropic  potential  component  is  responsible  for  rotational  distur- 

bances  to  the  molecule.  Figure 3.3(b) illustrates  the  typical  magnitude of 

anisotropy  effective  during  the  collision.  The  magnitude  is  gauged  by  noting 

that  the  equilibrium  separation of most  diatomic  molecules  is  near re = 0.1 nm, 

while  the  distance of closest  approach  during  a  collision  will  be  only 

slightly  less  than  the  zero-potential  radius, po. For  most  common  molecule- 

atom  interactions, po = 0.3 nm.  Figure  3.3(b)  is  drawn  for  the  ratio 

po/re = 3  with  a  radius po centered  on  each  molecular  nucleus.  The  equi- 

potential  appears  mostly  spherical  with  relatively  small  aspherical  components. 

The  small  anisotropic  terms  of  most  calculated  interaction  potentials  confirm 

these  observations. 

When  rotational  motion  is  considered,  it  is  most  conveniently  described 

by  a  coordinate  system  containing  an  angle, 6, that  defines  the  rotation of 

the  molecular  axis  relative $0. t,he,  position of the  incident  particle.  Fig- - . -  

ure  3.4  illustrates  such  a  coordinate  system.  The  subsequent  mathematics  then 

appear  in  a  convenient  format  if  the  potential  is  expressed  as  a  series 

expansion of Legendre  polynomials, PJ, in  the  form 

V(x,r,6> = uJ(x,r)  pJ(cos 6 )  (3.25) 
J 

In most  cases, ab-init io potentials  are  represented  by  equation  (3.25)  using 

only  two  or  three  terms. 
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\MOLECULE MASS CENTER 

Figure 3.4- Three-dimensional  encounter  nomenclature  viewed i n   t h e  time- 
dependent   p lane   def ined   by   the   loca t ion   of   the   inc ident   par t ic le  A and 
in t ramolecular   ax is  BC. 

The t y p i c a l l y  small anisotropy  of most i n t e r a c t i o n s  makes two s impl i fy ing  

assumptions  reasonable  that   greatly  reduce  the  complexity  of a three-  

d imens iona l   co l l i s ion  model. One i s  o p e r a t i v e   i f   t h e   i n c i d e n t   p a r t i c l e  motion 

is t r e a t e d   c l a s s i c a l l y .  An approximate   t ra jec tory  may then  be  obtained  using 

- 

o n l y   t h e   s p h e r i c a l  component o f   t h e   p o t e n t i a l .  Such  an  assumption  neglects 

out-of-plane  def lect ions  and  reduces  the  t ranslat ional   motion  to  t w o  dimen- 

s ions .   Averaging   the   in i t ia l   conf igura t ion  is then   g rea t ly   s imp l i f i ed .  A 

s econd   s impl i f i ca t ion ,   i n   keep ing   w i th   ou r   o r ig ina l   no t ions ,  is tha t   t he   an i so -  

t rop ic   po ten t ia l   can   be   approximated  by two a d d i t i v e   s p h e r i c a l   p o t e n t i a l s ,  

each  centered on a molecular   nucleus.   In   concept ,   the   use  of   pairwise  poten-  

t i a l s  ignores   the  second-order   mutual   interact ion  between  nuclei  and i t  a l s o  
. .  , , ' ,  . , I :  : . I  : i , , , - ,  I I . ,  

omits  the  shielding  or  shadowing  of  one  nucleus by t h e   o t h e r  as viewed  from 

the   pos i t i on   o f   t he   i nc iden t   pa r t i c l e .  However, i f   t h e   a n i s o t r o p y  is  small, 

these  second-order   correct ions w i l l  be smaller. I n   a d d i t i o n ,   t h e   i n t e r a c t i o n  

po ten t i a l   dec reases   r ap id ly   w i th   i n t e rnuc lea r   s epa ra t ion  so t h a t   f o r  most 

ang le s ,  6 ,  t h e   i n c i d e n t   p a B t i c l e  w i l l  be   interact ing  mainly  with  only  one 

molecular  nucleus a t  a time. Thus ,   sh i e ld ing   e f f ec t s   shou ld   be   r e l a t ive ly  

5 2  



unimportant.  For  the  purposes  of  this  study,  the  three-dimensional  interac- 

tion  potential is therefore  simulated  by  two  noninteracting  short-range  poten- 

tials,  each  given  by  equation ( 3 . 2 4 )  and  each  centered  on  a  molecular  nucleus. 

The  final  step in representing  the  potential  is  to  express  it  in  the  form  given 

by  equation ( 3 . 2 5 ) .  

3 . 2 . 3  Three-Dimensional  Interaction  Potential  Model 

Part  of  the  nomenclature  to  describe  a  three-dimensional  encounter  is 

defined  by  figure 3 . 4 .  The  figure  lies  in  a  time-dependent  plane  containing 

both  molecular  nuclei  and  the  instantaneous  position of the  incident  particle. 

A n  additive  repulsive  force  between  each  nucleus  will  then  produce  the  inter- 

action  potential 

v(Xb,Xc> = A(e “/L + e-+/‘) ( 3 . 2 6 )  

where A and  L  are  considered  identical  for  both  interacting  pairs.  The 

internuclear  separations  may  be  expressed  in  terms of mass-centered  variables 

as 

where Y = [mc/(m,, + me)]  is  the  molecular mass ratio  and m, 2 %. For  the 

potential to appear  nearly  spherical, r/Z must  remain  small  over  the  entire 

trajectory.  We  have  argued  that  it  does  remain  less  than  unity  since  its 

largest  value  at  closest  approach  is  only  r/Z = 1/3. Equation ( 3 . 2 7 )  may 

then  be  expanded  in  a  uniformly  convergent  power  series  of  r/Z,  giving  to 

f  irst-order , 
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Xb=f(l-Y,cos6+. r X . 
(3 .28)  

(l-Y),COS 6 + .  . . r 
L X 

The corresponding  first-order  representation of equation (3 .26)  is  then 

(3.29) 

Figure 3.5  demonstrates  that  the  first-order  potential,  equation (3 .29 ) ,  is  a 

reasonable  approximation  of  the  additive  spherical  potential,  equation (3 .26 ) ,  

for  the  typical  range  of  parameters  used  here. 

The  potential  model  given  by  equation (3 .29)  is  now  in  a  form  that  can  be 

conveniently  handled  in  the  framework  of  a  three-dimensional  collision  model. 

It may  be  transformed  to  a  form  equivalent  to  equation (3 .25)  by  use of the 

expansion 

e +z cos 6 - - 2 (25 + l)(kl)J IJ+1/2 (2) PJ(C0S 6 )  (3 .30)  
J= 0 

0 
2 .4 a 

0 30 60 90 120 150 180 
ORIENTATION ANGLE 6, deg 

Figure 3.5 . -  Variation  of  a  pairwise  repulsive  potential  and  its  first-order 
approximation  with  orientation  angle.  Calculations  were  done  for 
r/L = 5 .  Solid  curves  are  the  infinite-order  variation  from  equa- 
tion (3 .26) ;  dashed  curves  are  the  first-order  approximation, 
equation (3 .29 ) .  
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( s e e   r e f .  73, p. 445) where IJ+1/2 is the   modi f ied   spher ica l  Bessel func t ion  

o f   t h e   f i r s t   k i n d  and PJ is a Legendre  polynomial as before .  By reducing 

t h e   n o t a t i o n   w i t h   t h e   d e f i n i t i o n  

(3 .31)  

equat ion (3.29) is t r ans fo rmed   t o   t he  series rep resen ta t ion :  

(3 .32)  

As expected, i J ( z )  dec reases   r ap id ly   w i th  J fo r   t yp ica l   va lues   o f  z so 

t ha t   on ly  a few terms c o n t r i b u t e   t o   t h e  summation. The correspondence  between 

equat ions (3 .25 )  and (3 .32)  is  obvious. 

3 . 2 . 4  C o l l i n e a r   I n t e r a c t i o n   P o t e n t i a l  Model 

The discussions  of   previous  sect ions  have  noted  that  a one-dimensional 

c o l l i n e a r   c o l l i s i o n  model will b e   u s e f u l   i n   o b t a i n i n g   a n a l y t i c   d e s c r i p t i o n s  of 

t h e  rate of   v ibra t iona l   energy   t ransfer .  A brief  development of the   r equ i r ed  

i n t e r a c t i o n   p o t e n t i a l   e x p r e s s i o n  is therefore   inc luded   here .  

The most e f f e c t i v e   c o l l i n e a r   c o l l i s i o n   t o   i n d u c e   v i b r a t i o n a l   m o t i o n  w i l l  

be   an   encounter   wi th   the   l igh tes t   nuc leus   in   the   molecule .   Col l inear  encoun- 

ters are t h e r e f o r e   l i m i t e d   t o   t h o s e  where 6 = 0. Equation (3 .28 )  then 

reduces   to  

, ,  
.. . 

V(Z,r) = A e + e-(l-Y)r/L] (3 .33 )  

Typica l ly ,  r / L  U- 5 while Y is always less than   un i ty  so t h a t   t h e  second 

t e r m  i n   e q u a t i o n  (3 .33)  is always much smaller t h a n   t h e   f i r s t .  The i n t e r a c -  

t i o n   p o t e n t i a l   f o r   o n e - d i m e n s i o n a l   c o l l i n e a r   c o l l i s i o n s  is  the re fo re   t aken   t o  

be 
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V(5,r) = A e -‘t/L+Yr/L ( 3 . 3 4 )  

This  form  of  the  potential  or  a  linearized  version  of it have been  used  for  all 

collinear vibrational energy  transfer t h e o r i e ~ . ~ ~ , ~ ~ , ~ ~  It is  applied  in  the 

following  chapter to study  the  applicability of a  semiclassical  collision 

theory  to  anharmonic  oscillators. 
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CHAPTER 4 

A COMPARATIVE  EVALUATION OF THE  SEMICLASSICAL  APPROXIMATION 

We  have  shown  in  chapter  2  that,  while  a  semiclassical  collision  model 

offers  several  advantages  in  a  study  of  vibrational  energy  transfer,  the  cri- 

teria  for  its  application  are  not  explicit.  Hence  they  offer  marginal  help  in 

evaluating  the  validity  of  the  semiclassical  approximation  for  a  specific 

set  of  conditions.  We  have  also  observed  that  the  criteria,  expressed  by 

equations  (2.9)  and  (2.10),  suggest  that  the  validity  of  a  semiclassical  model 

will  be  influenced  by  the  oscillator  anharmonicity.  However,  previous  com- 

parative  evaluations  of  semiclassical  theories45  have  been  only  for  harmonic 

oscillators.  Furthermore,  the  results,  although  favorable,  have  not  been 

entirely  conclusive  because,  in  addition  to  the  absence of anharmonicity,  the 

semiclassical  formulation  is  typically  only  one  of  several  approximations  con- 

tained  in  the  comparisons,  while  all  the  corrections  known  to  improve  the 

semiclassical  predictions  are  not  always  included.  The  primary  purpose  of 

this  chapter  is  therefore  to  compare  the  vibrational  transition  probability 

predictions  from  a  semiclassical  model  for  anharmonic  oscillators  with a 

comprehensive  set  of  solutions  from  an  equivalent,  fully  quantum  mechanical, 

collision  model.  The onZy difference  in  the  two  models  is  the  treatment of 

the  incident  particle  motion, 

The  physically  incomplete  nature of a  semiclassical  treatment  requires 

some  interpretation  and  correction,  however, to facilitate  its  correlation 

with  more  exact  collision  models.  Hence,  in  this  chapter,  we  shall  also  deal 

explicitly  with  the  corrective  aspects  of  a  semiclassical  treatment.  For 

example,  a  well-known  weakness  of  semiclassical  theories  is  the  inherent  lack 
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of energy  conservation.  Several  methods  of  compensation  have  been  suggested 

that  aim  at  interpreting  either  the  classical  trajectory  energy20  or  veloc- 

ity42  in  terms  of  corresponding  values  averaged  over  the  collision.  Compari- 

sons  described  here  between  these  semiclassical  predictions  and  the  exact 

quantum-mechanical  calculations  show  that,  while  such  an  interpretation  is 

necessary  to  correct  the  semiclassical  predictions,  the  results  are  insensi- 

tive  to  the  choice  of  method  in  the  energy  range  of  practical  interest. 

Regardless  of  the  corrections  for  energy  conservation,  the  conventional 

semiclassical  treatment  will  be  shown  to  fail  badly  in  some  cases.  The 

failures  appear  in  the  form  of  anomalous  resonances  that  occur  only  in  anhar- 

monic  oscillator  models  and  are  caused  by  an  incomplete  account  of  the  oscil- 

lator  compression  and  recoil  during  impact.  Within  the  usual  semiclassical 

framework,  the  classical  trajectory  is  computed,  assuming  that  the  oscillator 

remains  in a pure  eigenstate  having a fixed  average  separation  of  its  nuclei. 

In  reality,  the  oscillator  is  compressed  by  the  impact  and  enters a mixed- 

state  condition  in  which  the  average  internuclear  separation  oscillates  with 

frequency  components  from  each  of  the  excited  states.  To  include  this 

behavior  in  the  semiclassical  theory  is  not  equivalent  to  conserving  energy, 

but  it  has  the  effect  of  introducing  an  oscillator  "feedback" on the  classical 

trajectory.  The  effect  can  change  the  entire  nature  of  the  results  in  some 

cases.  Extremely  heteronuclear  or  anharmonic  molecules,  such  as  the  hydrogen 

halides,  will  be  shown  as  members  of  the  class  strongly  affected. 

We  also  simplify  the  collision  geometry  used  here  by  confining  it  to 

collinear  encounters.  Direct  comparisons  with  the  fully  quantum  mechanical 

results  of  reference 68 are  thus  made  possible.  Calculations  have  been 

presented  in  the  literature of more  realistic  three-dimensional  encounters, 40 

58 



but  mainly  for  harmonic  oscillators  initially in the  ground  state.  They  have 

also  been  made  in  chapter 6 for  anharmonic  oscillators  in  excited  vibrational 

states.  However,  a  three-dimensional  collision  geometry  introduces many addi- 

tional  complexities,  as we  shall  demonstrate in chapter 6 ,  and  little  would be 

gained  by  including  it in this  chapter. 

In the  paragraphs  to  follow,  a  multistate  semiclassical  formulation 

requiring  numerical  solution  is  assembled  first  that  includes  modifications  of 

the  standard  treatment  to  account  for  the  effect  of  oscillator  response on the 

classical  trajectory.  The  model  is  entirely  equivalent  to  the  fully  quantum 

mechanical  model  in  reference 6 8 ,  except  for  the  classical  treatment  of  the 

incident  particle  motion.  The  accuracy  of  a  first-order  perturbation  theory 

used  by  Mies21  for  anharmonic  oscillators  is  also  evaluated. As expected, 

the  first-order  theory  is  suitable  only  where  the  transition  probabilities 

are  small;  but  it  must  also  be  limited  to  cases  where  the  oscillator  feedback 

effects  are  negligible.  Such  cases  will  be  shown to pertain  mainly  to  heavy 

homonuclear  molecules  impacted  by  lighter  collision  partners. 

4.1 Semiclassical  Model  for  Collinear  Collisions 

A full  description of the  semiclassical  formulation  for  a  general  colli- 

sion  geometry  is  given  in  appendix B. In  this  section,  only  the  results 

pertinent  to  collinear  collisions  are  recalled  in  detail. 

The  collinear  collision  geometry  is  shown  in  figure 4.1 for  a  structure- 

less  particle  of  mass, m impacting  a  diatomic  heteronuclear  molecular  with 

nuclear  masses, m.,, and  m . The  impacted  oscillator  nucleus, %, extends  from 

the  molecular  mass  center  by  a  distance yr, where y = mc/(m,, + mc). A 

three-body  center-of-mass  reference  frame  is  taken  in  which  the  relative 

a’ 

C 
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OSCILLATOR 
MASS  CENTER 

Figure 4.1.- Col l inear   col l is ion  geometry.  

co l l i s ion   speed  is ii. (Bar red   symbol s   i den t i fy   t he   i nc iden t   pa r t i c l e  vari- 

ab le s   t o   be   eva lua ted   c l a s s i ca l ly   and  later i n t e r p r e t e d  as average  values . )  

Except f o r   t h e   n o t a t i o n ,   t h i s   c o n f i g u r a t i o n  i s  i d e n t i c a l   t o   t h o s e   u s e d  by 

Mies20 Y 21 and i n   r e f e r e n c e s  45  and 68. 

The i n t e r a c t i o n   p o t e n t i a l   t o   b e   u s e d   h e r e  is of t h e  same form  given  in  

r e fe rence  68, namely, 

V(x) = A e -x/L 

where L and A are constants .  The p o t e n t i a l   i n  terms of mass c e n t e r  and 

o s c i l l a t o r   c o o r d i n a t e s   d e f i n e d   i n   f i g u r e  4 . 1  then becomes 

The Hamiltonian  for  the  three-body  system is given by 

where t h e  symbols w i t h   s u b s c r i p t  o r e f e r   t o   o s c i l l a t o r   q u a n t i t i e s  and t h e  

o t h e r  symbols   denote   inc ident   par t ic le   var iab les .  The osc i l l a to r   r educed  

mass is  = m,,mc/(% + mc) and the   co l l i s ion   r educed  mass i s  

F! = ma(% + mc)/(ma + % + mc). 
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4.1.1 Incident  Particle  Motion 

The  application of Ehrenfest's  theorem  to  the  incident  particle  dynamics 

guides  the  formulation of its  equation  of  motion  with  the  quantum  mechanically 

averaged  quantities  properly  included. In terms  of  quantum  mechanically 

averaged  variables,  the  equations  of  motion  are 

By  separating  the  total  wave  function  according  to 

and  treating  the  incident  particle  classically so that 

and 

the  equations of motion  for  the  incident  particle  combine  with  equation (4.1) 

to  give 

d2Z A -Z/L 
5 7 - L  - - e  

where  the  bracket  notation  implies 

(,rrlL) =Jmm $*(r,t) e + (r,  t)dr (4.2a) 

For  the  purely  repulsive  exponential  potential  used  here,  the  potential  con- 

stant, A,  influences  only  the  distance  of  closest  approach,  a  quantity of no 

direct  consequence  to  the  transition  probabilities. It may  be  removed  by  a 

61 



transformation  suggested  by  equating  the  potential  energy  at  closest  approach 

for  a  stationary  oscillator  with  the  initial  kinetic  energy,  that  is, 

E X0/L A + -  e 
'kk 

where E = (1/2)uij2 is  the  semiclassical  relative  collision  energy  before 

interaction,  Vkk  is  the  time-independent  diagonal  matrix  element  defined  by 

- 

(4.2b) 

and $,(r) is  the  initial  oscillator  stationary-state  eigenfunction.  Note 

that Ho is not  the  distance  of  closest  approach  for  a  nonstationary  oscil- 

lator.  However,  if  a  new  interaction  coordinate  is  defined  as E = H - E 

the  incident  particle  motion  is  unaffected  and  may  then  be  described by 
0' 

where 

R(t) E eyrlL ( )/'kk 

(4.3a) 

(4.3b) 

The  variable  R(t)  represents  the  quantum-mechanical  average  effect of the 

oscillator  motion  on  the  classical  path.  It  is  a  measure  of  the  oscillator 

distortion  during  impact  and  subsequent  "ringing"  afterward. 

To  compute  the  trajectory  classically, we must  first  describe  the  oscil- 

lator  motion to obtain R(t). The  usual  practice  at  this  point  has  been  to 

consider  the  oscillator  fixed  in  its  initial  pure  eigenstate so that 

$(r,t)  $k(r).  Then  R(t) FZ 1 for  all  time  and  the  classical  equation  of 

motion is reduced  to  the  equation for a  constant  energy  trajectory: 

- 
d2Z E -E/L 

V 7 P - L  
" e ( 4  4) 
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Equation (4.4) can  be  integrated analyti~ally~~ so that  the  interaction  poten- 

tial 

" kk 

can  be  written  explicitly  in  terms  of  time  by  use  of  the  result: 

e -i (t) /L = sech2(E) 

(4.5a) 

(4.5b) 

In such  an  approximation,  the  transformation  parameter E becomes  the 

distance  of  closest  approach. 
0 

4.1.2  Oscillator  Motion 

The  unsteady  motion  of  the  oscillator is treated  in  the  usual  way  by 

expanding  its  time-dependent  wave  function  $(r,t)  in  terms  of  stationary- 

state  Morse  oscillator  eigenfunctions $n(r) according  to 

where w = En/h  and  En  is  the  nth  state  eigenenergy.  Continuum  states 

are  neglected.  We  showed  in  chapter 3 that,  for  the  Morse  oscillator, 
n 

w n = w e (n + +) - wexe(. + +)2 . 
The  dynamical  wave  function  $(r,t)  describing  the  oscillator  response 

during a collision  is  the  solution  of  the  time-dependent  Schradinger  equation: 
. .  . . I  . ,  

where,  from  chapter 3 ,  

The  solutions  are  invariant  with  the  equilibrium  separation r and  it may be 

set  equal  to  zero.  The  remaining  potential  parameters  are  equated  to  the 
e 
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, ..- 

familiar  spectroscopic  constants w and x according  to  equations (3.4) and e  e 
(3.5). 

The  solution  of  equation  (4.7)  is  reduced  in a standard  way  (see  appen- 

dix B) to a set  of  linear,  coupled  differential  equations  for  the  expaFsion 

coefficients  defined  in  equation (4.6). Denoting 

and  incorporating  the  form  of  the  interaction  potential  in  equation  (4.5a),  the 

the  coefficients  in  equation (4.6) vary  in  time  according  to 

The  probability  that  an  oscillator,  initially  in  state k at t = -03, will 

reside  in  state n at t = +, is  then P(E) = I cn(m) I with  the  initial 

conditions I cj (-a) I = Cikj, where 6 is a Kronecker  delta. 
k-m 

kj 
The  matrix  elements  given  in  integral  form  by  equations  (4.2b)  and (4.8) 

may be  evaluated  analytically.20,68  If,  for  convenience  of  notation,  we 

define a = y/aL  and B = x -l,  then e 
N N  

V = Ba 
n j r(B - a+j-n -r(1 + a + j - a ) r ( s  - a - 1 - j - n + a )  

nj a n! a!(j - a)!r(l + a + j - n - a ) r ( s  - 2j + 2) 
R = 0  

where k(C) is  the  gamma  function73  with  argument 5, and  the  normalization 

constants  are 

Nm = - m) 2m)1 li2 
To stay  within  the  maximum  exponent  constraints  imposed  by  most  computers,  the 

evaluation  of  matrix  elements  with  large  indices  requires  the  ratios  of  gamma 
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functions  to  be  reduced  to  products  of  algebraic  terms  and  a  residual  gamma 

function  with  an  argument  less  than  unity. 73 

4.1.3  Coupling  of  the  Oscillator  Motion  and  the  Classical  Trajectory 

The  term e in  equation (4.9) may  be  evaluated  either  from  equa- 

tion  (4.5b)  or  by  the  coupled  integration  of  equation  (4.3),  depending  on 

the  treatment  of R(t). The  former  case  ignores  any  coupling  between  the 

oscillator  and  the  classical  path,  thus  assuming R(t) = 1 for  all t. The 

latter  case  requires  evaluation  of R(t) in  terms  of  the  expansion  coeffi- 

cients - a  task  easily  done  by  combining  equations  (4.2)  and (4.6) to  give 

(4.10) 

where  k  again  denotes  the  initial  state. 

Equation (4.10) characterizes  the  classical  nature  of  the  quantified 

oscillator  motion.  The  motion  will  become  oscillatory  as  soon  as  a  mixed- 

state  condition  is  produced  during  the  collision  and  will  remain so afterward. 

Near  closest  approach,  large  transient  excursions  of R(t) occur,  reflecting 

the  oscillator  compression  and  recoil. 

4.1.4 First-Order  Perturbation  Solutions 

From  a  practical  viewpoint,  the  convenience  of  an  analytical  solution 

warrants  even  the  coarsest  assumptions,  provided  the  limits  of  applicability 

are  understood.  This  study  attempts  to  confirm  those  limits  for  a  first-order 

perturbation  analysis  applied  to  anharmonic  oscillators  in  initially  excited 

states.  We  shall  see  that  the  perturbation  solutions  are  quite  successful 

within  their  intended  limits  and  will  serve  as  us(efu1  approximation  in  many 

cases. 
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An ana ly t i ca l   so lu t ion   o f   equa t ion   (4 .9 )  may be   ob ta ined   i f   t he   mo t ion   o f  

t h e  classical p a r t i c l e  is descr ibed by equation  (4.4).  For  an i n i t i a l  state 

k ,   t he   pe r tu rba t ion  method f u r t h e r   r e q u i r e s   t h a t  I c k ( t )  I zz 1 and 

[ c n ( t )  1 << 1 throughou t   t he   du ra t ion   o f   t he   co l l i s ion .  Then o n l y   t h e  

i n i t i a l  and f i n a l  states are coupled ,   a l lowing   equat ion   (4 .9)   to   be   wr i t ten   in  

t h e   i n t e g r a l  form: 

E 'nk 
2 

ICn(") I = 1 - - 'kk Jm sech2(z)exp [gJt r n k ( t ' ) d t '  ] d t  1 (4.11) 
-03 0 

with  

Equation  (4.11) may be   i n t eg ra t ed   t o   g ive21  

P(E) = 
k m  

nk 21~gpLii 
Vkk h sinh(.rrg) 

M(l + ig ,2 , i2A)  (4.12) 

where 
L(wn - wk) ~ L i j  'nn - 'kk 

g =  - U 
, x = -  h 'kk 

and  M(l + i g , 2 , i 2 X )  is the  confluent  hypergeometric series wi th  complex  argu- 

ments. The n e c e s s i t y  of complex a lgebra  may be  avoided when computing the  

modulus IM(1 + i g ,  2,i2A) I by not ing  i t s  r e l a t i o n   t o   t h e  Coulomb wave func- 

t ion   wi th   zero   index .  73 The r e s u l t  is 

I M ( 1  + i g 9 2 , i 2 h )  I = Oo(-g,A) (4.13) 

where 
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with  A1 = 1 and A2 = -g.  The remain ing   coef f ic ien ts  are obtained  from 

4.1.5 Numerical Solu t ion  Methods 

Solu t ions   to   the   coupled  set of  equations  (4.3)  and  (4.9) were obtained 

by f i r s t   s e p a r a t i n g   e q u a t i o n   ( 4 . 9 )   i n t o  a sepa ra t e  set for   each  'complex com- 

ponent   and  adopt ing  the  equivalent   of  a mul t ip le -s ta te ,   c lose-coupl ing  

approach.  Numerical  integration w a s  accomplished  with a polynomial  extrap- 

o l a t ion   a lgo r i thm  o r ig ina l ly   deve loped  by Bulirsch  and  Stoergl   and  given  in  

FORTRAN by Gear. 92 Fifth-order  polynomials  and a required  accuracy  of  one 

p a r t   i n  lo8 seemed to   op t imize   t he   ca l cu la t ion  of a se l ec t ed  test case  and 

- .  . -  

allowed a complete   encounter   to   be computed i n  50 t o  1000  steps,   depending on 

the   co l l i s ion   ene rgy  and the  number of  coupled states. Solut ions were s t a r t e d  

wi th   t he   mo lecu le   i n  a pu re   e igens t a t e   and   w i th   t he   i nc iden t   pa r t i c l e  a t  a 

d i s t a n c e   s u c h   t h a t   t h e   i n t e r a c t i o n   p o t e n t i a l  had a va lue  times t h e  esti- 

mated va lue  a t  c losest   approach.  The c a l c u l a t i o n  w a s  terminated a t  an  equal 

d i s t ance   a f t e r   t he   encoun te r .  A l l  values  of I c n ( t )  I were s u f f i c i e n t l y  

constant  a t  terminat ion.  The c l o s u r e   r e l a t i o n   x I c n ( t )  I = 1 w a s  used 

throughout   the  encounter   to   monitor   accuracy.   I f   the   ini t ia l  state quantum 

n 

number were k, states from n = 0 t o  2k were included a t  t h e  maximum ener- 

g ies   cons idered  t o  ensu re   t ha t   t he   so lu t ion  w a s  unaffected by neglected states. 

Of course,   in   the  energy  range  where  the  per turbat ion  theory w a s  success fu l ,  

as few as two states were adequate. The  computing times requ i r ed   t o   ob ta in  

a l l  the  matr ix   e lements   and  to   integrate   the  dynamics  of  a twelve-state model 

w a s  approximately  0.1  sec/step on a s ingle   p rec is ion   (14-d ig i t )  CDC-7600 

computer. 
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4.2 A Comparison  With  Fully  Quantum  Mechanical  Solutions 

The  availability  of  tabulated  results  for  exact  quantum  mechanical  calcu- 

lations6*  over  a  broad  range  of  collision  parameters  provides  an  excellent 

opportunity  to  evaluate  the  semiclassical  approximation  in  this  application. 

The  extent  of  the  examples  covered  is  characterized  by  the  range of the  mass 

parameter  m = m  m / %(ma + % + mc). For  the  cases  chosen,  m  varies  from 

0.006 for  Br2-H  collisions  to 3.7 for  HBr-He  collisions.  (Reference 68 labels 

one  data  set  as  Br2-H2,  but  uses  a  mass  parameter  corresponding  to  Br2-H.) A 

full  range  of  oscillator  frequency  and  anharmonicity  is  also  represented. 

Figures 4.2(a)  to  (f)  compare  the  predictions  of  the  semiclassical  theory  and 

its  first-order  approximation  to  a  sampling  of  the  results  in  reference 68 for 

the  homonuclear  oscillator  cases.  The  semiclassical  transition  probabilities 

are  plotted  as  functions  of  the  normalized  initial  kinetic  energy  of  the 

incident  particle, E/hw . The  probabilities  from  reference 68, hereafter 

referred  to  as  "exact,"  are  shown  at  energies  displaced  according  to  a  trajec- 

tory  symmetrization  scheme  (to  be  discussed).  In  the  paragraphs  to  follow, 

the  comparisons  in  figures  4.2(a)  to  (f)  are  used  to  evaluate  the  validity  of 

several  methods of compensating  for  the  lack  of  energy  conservation  in  the 

semiclassical  approximation  and  to  demonstrate  the  influence  of  coupling 

a c  

- 
e 

between  the  recoiling  quantum-oscillator  and  the  classical  incident-particle 

mot  ion. 

4.2.1  Energy  Conservation  and  the  Classical  Parameters 

The  absence  of  energy  conservation  in  the  semiclassical  approximation 

requires  an  interpretation  of  the  initial  relative  kinetic  energy E assigned 

to the  classical  trajectory.  It  may  be  considered  an  effective  value, 
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Figure 4.2.- Comparisons  of semiclassical  and  quantum-mechanica168 t r ans i t i on   p robab i l i t i e s  of homo- 
nuclear  molecules. All ca lcu la t ions  are done f o r  L = 0.02 nm.  Open symbols  denote  points  tabu- 
l a t e d   i n   r e f e r e n c e  68 and plotted  according  to  equation  (4.15).  The curves are semiclas- 
s ica l   mul t i s ta te   so lu t ions   us ing  classical  t r a j ec to r i e s   coup led   t o   t he   o sc i l l a to r  motion via 
equation ( 4 . 3 ) .  The curves - - - are the  same without  coupllng via equation ( 4 . 4 ) .  The curves 
curves - - - - are first-order  perturbation  solutions  given by equation (4 .12) .  Ch 
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ave raged   ove r   t he   t r a j ec to ry   f rom  the   t rue   i n i t i a l   va lue  Ek t o   t h e   f i n a l  

value when,the  molecule  undergoes a t r a n s i t i o n  from state k t o   n .  If En 9 

t o t a l   e n e r g y  is conserved, ET, Ek, and En are r e l a t e d  by 

Ek + hw = ET = E + hw k n n (4.14) 

No formal   guidel ines  are a v a i l a b l e ,  however , f o r   s i m p l y   r e l a t i n g  E t o  t h e  

exac t   energ ies  Ek and En. Perhaps   the   c loses t   one   can  come is w i t h   t h e  

method descr ibed   in   re fe rence   42 ,   where   the   formula t ion   of  a l i n e a r i z e d  

quantum-mechanical  approximation is compared t o  i t s  semiclassical counterpar t .  

E x p r e s s i o n s   f o r   t h e   t r a n s i t i o n   p r o b a b i l i t i e s   g i v e n  by both  approximations 

become similar i f  E is defined by t h e   a v e r a g e   v e l o c i t y  u = (un + x)/.. 
Another  approach is taken by Mies, 21 who u s e s   t h e   i n t u i t i v e l y   a p p e a l i n g  

ar i thmetic   energy  average = (En + Ek)/2. Combined with  equation  (4.14),  

t he   t o t a l   ene rgy   can   t hen   be   r e l a t ed   t o   t he   ave rage   ene rgy   acco rd ing   t o  

- - 

ET = E + h (wn + wk)/2 (4.15) 

where h ( w  + w ) / 2  i s  t h e   o s c i l l a t o r   e n e r g y   a v e r a g e d   o v e r   t h e   t r a n s i t i o n .  

Occasionally,   even  the  geometric  average E = (E E )ll2 has  been  suggested. 69 

Equation  (4.15) w a s  chosen  here   for   the  comparisons  in   f igures   4 .2 ,   where i t  

is  shown to   be   gene ra l ly   success fu l .  It co r re l a t e s   t he   p red ic t ions   o f   bo th  

n k  

k n  

t h e o r i e s  for a l l  i n i t i a l  states, t r a n s i t i o n s ,   a n d  mass r a t i o s   t e s t e d  and 

appea r s   app l i cab le   fo r  a l l  ene rg ie s  E from th resho ld  up t o  a t  least t h e  

f i r s t   p r o b a b i l i t y  maximum. Figure  4.2(c) shows c o r r e l a t i o n  beyond t h e   f i r s t  

maximum. Note  however, t h a t  when t h e  effect  of   the  osci l la tor   motion  coupled 

t o   t h e   c l a s s i c a l   t r a j e c t o r y  is d i s t ingu i shab le ,   t he   coup l ing  must be  included 

to  preserve  the  accuracy  of  equation  (4.15)  (e.g. ,  see f ig .   4 .2 (a ) ) .  The o t h e r  

averaging  methods are no less accura t e ,  however.  Table  4.1 reveals t h a t  a l l  

- 
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the   averaging  methods  descr ibed  give  essent ia l ly   the same r e s u l t s  and t h a t ,  

within  the  range  of  these  comparisons,   the  best   choice  cannot  be  selected.  

D i f f e r e n c e s   i n   t h e   t h r e e  methods (or   apparent ly   any  other  method) w i l l  only 

become d i s t ingu i shab le  a t  values  of ET >> hue,  where,  from  thermal  considera- 

t ions ,  ET i s  beyond t h e   r a n g e   o f   p r a c t i c a l   i n t e r e s t .  From a pragmatic view- 

point ,   equat ion  (4 .15)  is a t t rac t ive   because ,   un l ike   the   o ther   averages ,  i t  

provides  an  energy  transformation, ET - E, independent  of E and  a l lows  the 

energ ies  Ek o r  En t o   be   wr i t t en   exp l i c i t l y   i n   t e rms   o f   w i th   s imp le  

a lgeb ra i c  form. These  features  are convenient f o r  addi t iona l   manipula t ion  

such as thermal  averaging. 

- 

TABLE 4.1.- A COMPARISON  OF SYMMETRIZATION METHODS APPLIED TO ANHARMONIC H2 

T 
Trans i t i ons  - 

k - + n  

0- 1 
0- 2 
0- 3 

2- 3 
2-4 
2- 5 

5-6 

Observed 

Figs .  2 (a)-  (b) 

Note  (a) 

1 .0  
1 . 3  
1 . 7  

2 .7  
3.1 
3.5 

5.0 

0.97 
1 . 4 1  
1.83 

2.75 
3.14 
3.51 

5.03 

0.99 
1.46 
1.94 

2.76 
3.20 
3.65 

5.06 

- 
E = (EnEk)lj2 

Note  (b) 

1 .01  
1.50 
2.05 

2.78 
3.26 
3.80 

5.08 

Note  (a) The observed  energy  difference  between  the  semiclassical   and 
e x a c t   r e s u l t s   f o r  a g iven   probabi l i ty   near   th reshold .  The semic la s s i ca l  
r e su l t s   i nc lude   o sc i l l a to r   f eedback .  

Note  (b) Computed f o r  E / h w e  = 6.  
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4.2.2 Influence of Oscillator  Response  on  the  Classical  Motion 

The  discussion  to  this  point  has  been  confined  to  homonuclear  molecules. 

Figures 4.2 indicate  that  coupling  oscillator  motion  and  the  classical  trajec- 

tory  has  a  noticeable  effect  only  for  the  most  anharmonic  molecule, Hp, and 

then  only  when  struck  by  a  relatively  heavy  particle,  He.  However,  semiclas- 

sical  calculations  for  heteronuclear  cases  are  much  more  sensitive  to  the 

oscillator  response.  In  the  customary  semiclassical  formulation,  the  incident 

particle  dynamics  are  related  only  to  its  distance  from  the  mass  center of the 

molecule,  and  no  regard  is  given  for  the  location  of  the  impacted  nucleus 

(e.g., see  eq. ( 4 . 4 ) ) .  In  an  extreme  heteronuclear  case  where  the  impacted 

nucleus  is  extended  to  a  distance  similar  to  the  distance  of  closest 

approach,  the  incident  particle  can  spatially  overlap  the  impacted  nucleus 

I without  constraint.  Of  course,  even  the  approach  to  this  extreme  situation 

signals  the  failure  of  the  assumptions  leading  to  equation ( 4 . 4 ) .  

The  hydrogen-halides  represent  examples of diatomic  molecules  whose 

heteronuclear  properties  strongly  influence  the  incident  particle  motion,  with 

the  effects  further  augmented  by  the  accompanying  large  anharrnonicity. A s  an 

example,  figure 4 . 3  illustrates  the  behavior  of  HBr-He  collisions,  where H is 

the  impacted  nucleus.  Similar  results  were  obtained  for  HC1-He  and  are  assumed 

to  be  characteristic  for  all  hydrogen-halide-like  molecules..  Both  the  semi-,:-' 

classical  numerical  solutions  and  the  analytical  theory  predict  an  anomalous 

resonance  at  low  energy  when  the  classical  trajectory  is  obtained  from  equa- 

tion ( 4 . 4 ) .  The  resonance  is  a  combined  result  of  an  improper  trajectory  and 

the  oscillator  anharmonicity  since  similar  calculations  treating  the  molecule 

as  a  harmonic  oscillator  behaved  normally  and  in  accordance  with  corresponding 

quantum-mechanical  solutions. 68 Considerable  care  was  exercised  in  verifying 
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Figure  4.3.-  Comparison  of  semiclassical  and  quantum-mechanical  transition 
probabilities  for  HBr(k = 0) - He  collisions.  The  impact  is  between H 
and  He.  The  notation  is  the  same  as  in  figure  4.2; o denotes 
k + n = O + l .  

the  resonance  as  a  real  solution of the  theoretical  model  rather  than  a  numer- 

ical  artifact.  The  similar  behavior of the  analytical  solution  supports  the 

conclusion  that  the  effect  is  a  real  consequence  of  the  model  used.  When 

oscillator  motion  is  included  via  equations ( 4 . 3 )  and  (4.10),  the  resonance 

disappears  and  the  solution  is  more  in  accordance  with  the  quantum-mechanical 

results  for  single-quantum  transitions.  However,  multiple-quantum  probabil- 

ities  such  as  still  display  a  low-energy  anpmalous  resonance.  The  inter- 

polation of E for  single-quantum  transitions  is  also  shown  to  be  less 
- 

accurate,  but  equation  (4.15)  still  performs  well  near  threshold.  The  results 
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s u g g e s t   t h a t   t h e   i n t e r f e r e n c e   b e t w e e n   t h e   o s c i l l a t o r   a n d   t h e   i n c i d e n t   p a r t i c l e  

is no t   fu l ly   accoun ted   fo r ,   bu t  i f  i t  were, equation  (4.15)  would  apply. 

T h e . e f f e c t s   o f   t h e   o s c i l l a t o r   m o t i o n  are not   generated  s imply  by  large 

excursions  of  R ( t )  du r ing   t he   co l l i s ion .   F igu re  4.4  compares t h e  time- 

dependen't v a r i a t i o n   o f  R ( t )  w i th   and   w i thou t   t he   e f f ec t s   coup led   t o   t he  

c o l l i s i o n  dynamics f o r  two extreme cases: (a) H2-H c o l l i s i o n s ,   w h e r e   t h e  

excursions of R ( t )  are l a r g e s t ,   b u t   t h e   e f f e c t  is negl igible;   and  (b)  HBr-He 

c o l l i s i o n s ,  where the   excurs ions  are smaller, b u t  a pb.ase s h i f t  i s  introduced 

i n   t h e   o s c i l l a t o r   m o t i o n   t h a t   s e v e r e l y  al ters t h e   r e m a i n i n g   o s c i l l a t o r  

response. 

1.6 - E/h&=6.5g! \ 
I 

1.2 - t1'1 
R 

.8 - \ l t  

\ 

.4 - 

0 '  I I I I I I I I 
-6 -4 -2 0 2 4 6 8 IO 

UV2L 

Figure 4 . 4 . -  T r a n s i e n t   o s c i l l a t o r   e f f e c t s  on t h e   i n t e r a c t i o n   p o t e n t i a l ;  R is 
def ined by equat ion  (4 .3b) .   Curves  denote   the  potent ia l  term with 
the   o sc i l l a to r   mo t ion   coup led   t o   t he   c l a s s i ca l   t r a j ec to ry ;   cu rves  -- - - 
d e n o t e   t h e   p o t e n t i a l  term without  coupling. 
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4 . 2 . 3  Applicabi l i ty   of   Firs t -Order   Per turbat ion  Theory 

Figures  4.2 and 4 . 3  amply demons t r a t e   t he   f ac t   t ha t ,  when t h e   o s c i l l a t o r  

is anharmonic,  not  only  must be  small f o r   t h e   f i r s t - o r d e r   p e r t u r b a t i o n  

t h e o r y   t o   a p p l y   b u t   t h e   t r a n s i e n t   m o t i o n   o f   t h e   o s c i l l a t o r  must a lso  have no 

s i g n i f i c a n t   e f f e c t  on t h e   c o l l i s i o n  dynamics. When t h e   e f f e c t s   o f   t h e '   o s c i l -  

l a t o r  motion were neg l ig ib l e ,   t he   pe r tu rba t ion   approx ima t ion   f a i l s  when 

'k-m 

a maximum - a fami l ia r   fea ture   o f   equiva len t   harmonic   osc i l la tor   models .   In  

the   app l i ca t ion   o f  a per turba t ion   approximat ion   to   anharmonic   osc i l la tors ,  a 

p r o b a b i l i t y  maximum  may appear   for  Pk*< 1, b u t   t h e  maximum i s  always  an 

a r t i f a c t  o f   the   semic lass ica l   per turba t ion   approximat ion   and   s igna ls   the  

f a i l u r e  of t he   t heo ry   due   t o   t he   neg lec t  of R( t )   var ia t ions .   These   conclu-  

s i o n s  are no t   su rp r i s ing ,   bu t   t hey   fu r the r   cons t r a in   t he   anha rmon ic   o sc i l l a to r  

'k+n 

-+ 1. F u r t h e r   i n c r e a s e s   i n  E cause Pkm t o  exceed  unity  before  keaching 

perturbation  theory  to  heavy  homonuclear  molecules  such as N2, 0 2 ,  and  the 

ha logens .   F i r s t -o rde r   pe r tu rba t ion   ca l cu la t ions   fo r   s l i gh t ly   he t e ronuc lea r  

molecules  such as CO a l s o   r e q u i r e   c a r e f u l   a t t e n t i o n .   J u s t  as f o r  H 2 ,  c o l l i -  

s i o n s  of CO w i t h   l i g h t e r   p a r t i c l e s   ( e . g . ,  CO-He c o l l i s i o n s )  were unaffected by 

the   o sc i l l a to r   mo t ion .  However, f i g u r e  4 .5  shows t h a t   p e r t u r b a t i o n   c a l c u l a -  

t i o n s  of c o l l i s i o n s   w i t h   h e a v i e r   p a r t i c l e s   ( e . g . ,  CO-Ar co l l i s ions )   d i sp l ay  

l a r g e   e r r o r s  due to   the   coupled   osc i l la tor   mot ion   and   a l so   due   to   an   increased  

coupl ing   of   the   nonadjacent   osc i l la tor  s ta tes  t h a t  are  no t   i nc luded   i n   t he  

per turbat ion  approximation.  A s  f i g u r e  4.5 shows, t h e  two e f f e c t s  compensate 

e a c h   o t h e r   f o r   t h e   i n i t i a l  s ta te  chosen.  In  the CO-Ar c a se ,   t he   pe r tu rba t ion -  

t h e o r y   e r r o r s  are no t  accompanied  by  anomalous p r o b a b i l i t y  maximums i n   t h e  

ene rgy   r ange   o f   p rac t i ca l   i n t e re s t .  
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UNCOUPLED OSCILLATOR- 
TRAJECTORY MOTION, R = I, 

10-1 

PI-0 
10-2 

I 0-3 

FIRST-ORDER PERTURBATION 
THEORY,  EQ. (4.12) 

COUPLED OSCILLATOR-TRAJECTORY 
MOTION, R(t )+l  
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Figure 4.5.- Semiclassical  transition  probabilities  for CO(k = 1) - Ar  colli- 
sions; L = 0.02 nm. 

4 . 3  Summary 

The  semiclassical  approximation  has  been  applied  to  vibrational  transi- 

tions  induced  in  anharmonic  oscillators  by  collinear  collision  with  inert 

atoms.  Multistate  numerical  solutions  have  been  compared  with  exact  quantum- 

mechanical  calculations of an  equivalent  collision  model  for  a  wide  range  of 

initial  molecular  states  and  collision  partners.  The  comparisons  allow  a 

comprehensive  assessment  of  the  semiclassical  approximation  for  the  anharmonic 

oscillator  model.  The  semiclassical  predictions  accurately  reproduce  the 

quantum-mechanical  transition  probabilities  for  all  initial  collision  energies 

from  the  threshold  to  at  least  the  first  probability  maximum  if  either  the 

semiclassical  collision  velocity  or  energy  is  interpreted  as  a  simple  average 

of  the  exact  initial  and  final  values.  The  accuracy  of  the  correlation 

between  theories  is  not  sensitive  to  the  choice  of  averaging  method. 
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The  semiclassical  approximation,  in  its  usual  form  where  the  classical 

trajectory  is  computed  independently,  was  found  to  be  applicable  to  heavy 

homonuclear  molecules  such  as N2, 02, and  the  halogens  on  impact  with  lighter 

partners.  Lighter  homonuclear  molecules  such  as  H2  showed  poorer  agreement 

when  impacted  by a heavier  collision  partner.  Heteronuclear  anharmonic  mole- 

cules  such  as  the  hydrogen-halides  displayed  anomalous  resonances  at  low 

energy  that  do  not  appear  in  their  harmonic  counterparts.  The  accuracy of the 

semiclassical  approximation  for  light  or  heteronuclear  anharmonic  molecules 

was  significantly  improved  by  coupling  the  effects  of  the  time-dependent 

average  motion  of  the  recoiling  oscillator  to  the  classical  trajectory. 

A convenient,  analytical,  first-order,  perturbation  analysis  for  anhar- 

monic  oscillators  was  found  to  be  accurate  for  small-transition  probabilities, 

but  only  if  the  effects  of  the  oscillator  motion  on  the  classical  trajectory 

were  unimportant.  The  analytical  approximation  is  therefore  not  applicable 

to  significantly  anharmonic  and  heteronuclear  molecules  and  must  be  applied 

with  care  for  slightly  heteronuclear  molecules  such  as CO. 
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CHAPTER 5 

VIBRATIONAL QUANTUM NUMBER DEPENDENCE OF  ENERGY-TRANSFER RATES 

I n  chapter  1, we d iscussed   the   sparseness   o f   exper imenta l   and   theore t ica l  

e f f o r t s   t o   d e s c r i b e   t h e  rates o f   v ib ra t iona l   ene rgy   t r ans fe r   f rom  in i t i a l ly  

e x c i t e d   v i b r a t i o n a l  states. The ob jec t ives   o f   t h i s   chap te r  are t h e r e f o r e  

t o  examine t h e   f a c t o r s   i n f l u e n c i n g   t h e   p r e d i c t i o n  of  such rates and t o  

e v a l u a t e   t h e   v a l i d i t y   o f  several ana ly t i c   fo rmulas   i n   popu la r   u se   fo r  

e s t i m a t i n g   t h e i r  quantum number dependence. However, the  approach  to   be 

taken must  be l i m i t e d  by pragmatic  considerations.  For  example,  accurate 

V-T r a t e - c o e f f i c i e n t   c a l c u l a t i o n s  by any t h e o r e t i c a l  model are clouded by 

u n c e r t a i n t i e s   i n   t h e   s h a p e  and  magnitude  of t h e   i n t e r a c t i o n   f o r c e s  between 

c o l l i d i n g  pairs f o r  a l l  but  a few s i m p l e  cases. Thus, w e  can  examine  only 

t h e   q u a l i t a t i v e   f e a t u r e s   t h a t  are not  masked by i n t e r a c t i o n   p o t e n t i a l  

uncertaint ies .   Furthermore,   even  an  extended  col l is ion model  must r e t a i n  

some approximat ions ,   par t icu lar ly   regard ing   the   co l l i s ion   geometry ,   i f  i t  

is t o  remain  computationally practical in   the   p red ic t ion   of   thermal ly  

averaged rate c o e f f i c i e n t s .  Hence, a t t e n t i o n  i s  conf ined   here   to   the   co l -  

l i n e a r  semiclassical t rea tment   descr ibed   in   chapter  4 t ha t   accu ra t e ly   r ep ro -  

duces a l l  t he  main c h a r a c t e r i s t i c s  of v ib ra t iona l   ene rgy   t r ans fe r   t o   i n i -  

t i a l l y   e x c i t e d   o s c i l l a t o r s ,   b u t   o f f e r s   t h e   a d v a n t a g e   o f   b e i n g   f u r t h e r   r e d u c -  

ib l e   t o   y i e ld   c losed - fo rm  ana ly t i c   so lu t ions .  The a n a l y t i c   s o l u t i o n s  are of 

p a r t i c u l a r   i n t e r e s t   b e c a u s e  of t he i r   p rac t i ca l   impor t ance   i n   t he   numer i ca l ly  

cumbersome analysis  of  macroscopic  nonequilibrium  processes  for  which rate 

in fo rma t ion   fo r   s eve ra l  modes of  energy  transfer  must  be  economically 
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provided. 1-1 The  complete  semiclassical  model,  requiring  numerical  solu- 

tion, is  applied  both  to  an  examination  of  the  qualitative  nature  of  upper- 

state  transitions  and  as a basis  for  evaluating  the  accuracy  of  the  analyt- 

ical  solutions. 

In the  sections  to  follow,  the  features of the  collision  model  that 

appear  most  important  to  the  dynamics  of a vibrationally  excited  oscillator 

are  first  discussed,  followed  by a description of several  approximations, 

each  of  which  retains  one  or  more  of  the  features  considered.  Approximate 

values  of  the  interaction  potential  parameters  and  their  range  of  uncertainty 

are  then  estimated  by  comparing  the  predicted  ground-state  rate  coefficient 

with a comprehensive  set  of  experimental  values.  Collisions  of  CO  with  He 

are  chosen  as  the  example  because  of  the  abundant  data  available.  The 

implied  potential  parameters  are  then  used  to  compare  the  numerical  model 

with  some  experimental  excited-state  rate  coefficients  and  with  the  analytic 

predictions.  Finally,  the  effects  of  multiple-quantum  transitions  from 

excited  states  on a vibrational  relaxation  process  are  considered  both  for 

molecules  like  CO,  where  the  effect  is  secondary,  and  for  molecules  like 

the  halogens,  where  the  effect  can  be  dominant. 

5.1 Collision  Model 

5.1.1 Features  Influencing  the  Excited-State  Collision  Dynamics 

As the  quantum  number  of  the  initial  oscillator  state  is  increased, 

several  aspects  influencing  the  oscillator  dynamics  and  its  interactions 

with  the  incident  particle  become  increasingly  important.  For  example, 

the  wave  functions  that  describe  vibrationally  excited  eigenstates  become 

more  extended  in  the  oscillator  coordinate.  Consequently,  when the 
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o s c i l l a t o r  is d i s t o r t e d  by a col l is ion,   the   wave-funct ion  overlap is g r e a t e r  

no t   on ly   wi th   ad jacent   e igens ta tes   bu t   wi th  more remote states as w e l l .  This 

f e a t u r e  is r e f l e c t e d  by the  increased  magni tude  of   the  matr ix   e lements  

dynamical ly   coupl ing  the  e igenstates   which,   in   turn,   accounts   for   the  greater  

p robab i l i t y  of V-T energy  transfer  through  both  single-  and  multiple-quantum 

t rans i t ions .   Fur thermore ,   the   increased   coupl ing  of nonadjacent states 

d u r i n g   t h e   c o l l i s i o n   c a n   a f f e c t   t h e   f i n a l   o c c u p a t i o n   o f  states ad jacen t   t o  

t h e   i n i t i a l  s tate and  thereby  inf luence  the rate of single-quantum  transi- 

t ions.  Thus, a calculat ion  of   the  osci l la tor   dynamics  f rom  an  exci ted 

i n i t i a l  s ta te  must   inc lude   mul t ip le -s ta te   in te rac t ions  a t  c o l l i s i o n   e n e r g i e s  

where  they are normally  unimportant   for   osci l la tors   in   the  ground state. 

The degree  with  which  multiple-quantum  transit ions  influence  the 

o s c i l l a t o r  dynamics  during a c o l l i s i o n  depend, i n  par t ,  on the  form  of  the 

i n t e r a c t i o n   p o t e n t i a l .  A common prac t ice ,   o f ten   used   to   s impl i fy   the  

ana lys i s   o f   g round-s t a t e   o sc i l l a to r s ,  is to   cons ide r   t he   o sc i l l a to r   mo t ion  

small compared t o   t h e   r a n g e  of i n t e r a c t i o n  and l i n e a r i z e   t h e   i n t e r a c t i o n  

p o t e n t i a l   i n   t h e   o s c i l l a t o r   c o o r d i n a t e .   I n  a harmonic o s c i l l a t o r ,   t h i s  

t rea tment   has   the   e f fec t   o f   equa l iz ing  a l l  the  diagonal  matrix  elements  and 

forbidding  mult iple-quantum  t ransi t ions.  The occupation  of  nonadjacent 

o s c i l l a t o r  states i s ' then   poss ib le   on ly   th rough a sequence  of  single-quantum 

s t eps   du r ing   t he   co l l i s ion .   Non l inea r   i n t e rac t ion  terms remove these  

r e s t r i c t i o n s  and   modi fy   f ina l - s ta te   occupat ions   in  two r e l a t e d  ways. F i r s t ,  

a l l  the  nonadjacent states are d i rec t ly   coupled ,   thereby   increas ing   the i r  

access ib i l i ty .   Second,   the   d iagonal   mat r ix   e lements  are no longer   equal ,  

l e a d i n g   t o   a d d i t i o n a l   p h a s e   d i s t o r t i o n s   i n   t h e  quantum-mechanical o s c i l l a t o r  

motion  which  modify t h e   p r o b a b i l i t y   o f   t r a n s i t i o n .  The addi t iona l   phase  
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s h i f t s  depend on the   product   of   the   difference  between  diagona1.matr i .x  

e l emen t s   and   t he   s t r eng th   o f   t he   i n t e rac t ion .  They a p p e a r   e x p l i c i t l y  i n  a 

semiclassical impact  parameter  treatment  described by Bates93 and a p p l i e d   t o  

anharmonic o s c i l l a t o r s   b y  Mies.21 The formulation  has  been  reviewed i n  

s e c t i o n  B . 3  of  Appendix B. 

A l l  t he   fo rego ing   e f f ec t s  are amplif ied when osc i l l a to r   anha rmon ic i ty  

is included.  Nonadjacent states become coup led   even   fo r   l i nea r i zed   i n t e r -  

a c t i o n s  and t h e   l a r g e r   d i f f e r e n c e  between the  diagonal   matr ix   e lements  

creates phase   d i s to r t ions   t ha t   can  become a s i g n i f i c a n t   f r a c t i o n   o f   t h e  

unperturbed  osci l la tor   per iod.   Mies20r21  has  shown the   i n f luence   on   t r ans i -  

t i o n   p r o b a b i l i t y   p r e d i c t i o n s   t o   b e   l a r g e   e v e n   f o r   o s c i l l a t o r s   i n i t i a l l y   i n  

t h e  ground s ta te .  A second,  and i n  some cases g r e a t e r ,   e f f e c t   o f  anharmon- 

i c i t y  i s  i t s  in f luence  on t h e   v a r i a t i o n  of   e igenenergies   with quantum number. 

S i n c e   t r a n s i t i o n   p r o b a b i l i t i e s   a n d   t h e   r e l a t e d  rate c o e f f i c i e n t s  are known 

t o  depend on t h e  amount of   energy  t ransferred,  a lowes t -order   e f fec t   o f  

o sc i l l a to r   anha rmon ic i ty  may be  demonstrated  by  simply  inserting  anharmonic 

o s c i l l a t o r   e i g e n e n e r g i e s   i n t o  a harmonic o s c i l l a t o r   t h e o r y   s u c h  as tha t   g iven  

by Schwartz e t  aZ. 30 The results devia te   subs tan t ia l ly   f rom  the   s imple  

Landau-Tel le r   re la t ion   for   the  rate coe f f i c i en t s   g iven  by equation  (1.2)  and 

where k (T) denotes   the  rate c o e f f i c i e n t   f o r   t r a n s i t i o n s   f r o m  s ta te  

m t o  m-1 and is a func t ion   o f   t he   k ine t i c   t empera tu re  T. However, t h e  

s i m p l e  ad hoc inser t ion  of   anharmonic  e igenenergies   into a harmonic  osci l la-  

t o r  model is not  always a s u f f i c i e n t  means of  accounting  for  anharmonicity.  

m,m-l 
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The  influence  of  anharmonicity  on  the  interaction  matrix  elements,  which  in 

turn  effects  both  the  magnitude  and  phase  of  the  oscillator  motion,  is  often 

so great  that  an  anharmonic  oscillator  model  must  be  used  from  the  start. 

Fortunately,  osclllator  anharmonicity  and  nonlinear  interaction  potentials 

present  only a slight  increase in computational  difficulty,  particularly  if 

a Morse  oscillator  and  an  exponential  form  of  the  interaction  are  adopted. 

The  necessary  matrix  elements  are  then  conveniently  expressed  in  closed 

algebraic  form  just  as  for  harmonic  oscillators. 

Finally,  an  oscillator  potential  creating  anharmonicity  also  admits  to 

the  existence  of  continuum  states.  We  shall  neglect  their  contribution  to 

the  energy  transfer  process,  however,  since  they  are  energetically  inacces- 

sible  by a large  margin  for  the  combinations of collision  energies  and 

initial  states  considered  here.  Although  their  effects  have  not  been  evalu- 

ated,  the  occupation  of  continuum  states  is  presumed  to  be  as  small  as  the 

nearby  bound  states,  and  no  bound  states  near  the  continuum  were  found  to 

influence  the  dynamics  of  any  states  at  the  quantum  levels  of  interest. 

5.1.2  Aspects of the  Semiclassical  Numerical Model 

To obtain V-T rate  coefficients,  we  calculate  the  associated  transition 

probabilities  using  the  semiclassical  collision  model  described  in  chapter 4, 

wherein  the  trajectory  is  constrained  to  collinear  encounters.  One of the 

penalties of using a semiclassical  approximation  was  shown  to  be  that  total 

energy  is  not  conserved;  but  as shown in  chapter 4 ,  the  effects  of  that 

omission  are  easily  and  accurately  compensated  for  by  interpreting  the 

relative  collision  energy  as an average  of  the  known  initial  and  final 

values. A far  more  severe  limitation  of  the  semiclassical  theory was 
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found t o   b e  i ts  incomple te   t rea tment   o f   the   in te rac t ion  when t h e   o s c i l l a t o r  

is very  heteronuclear-  (e.g.,,   hydrogen-halides). Such cases are avoided 

he re   and   have   p re sen ted   numer i ca l   d i f f i cu l ty   i n  exact t reatments .68 

The impl ica t ions   in t roduced  by a r e s t r i c t i o n   t o   c o l l i n e a r   e n c o u n t e r s  are 

no t  as w e l l  u n d e r s t o o d ,   b u t   t h e   r e s t r i c t i o n  is n e c e s s a r y   i f   t h e  quantum- 

number dependence  of  thermally  averaged rate c o e f f i c i e n t s  is ever t o  be 

o b t a i n e d   i n  a reasonable  computing time. Clear ly ,  a more realistic approach 

would inc lude  a three-dimensional  coll ision  geometry  in  which  simultaneous 

r o t a t i o n a l   t r a n s i t i o n s  are coupled   wi th   the   v ibra t iona l   mot ion ,   bu t   the   l a rge  

number of r o t a t i o n a l  states t h a t  become a c c e s s i b l e  a t  c o l l i s i o n   e n e r g i e s  

s u f f i c i e n t   t o   c a u s e   v i b r a t i o n a l   t r a n s i t i o n s  would make ou r   ob jec t ive  of 

studying  thermally  averaged rate c o e f f i c i e n t s   i m p r a c t i c a l   f o r  a l l  but  a few 

spec ia l   mo lecu le s ,   l i ke  H2. On the   o ther   hand ,  so long as t h e   r o t a t i o n a l  

e igenenergies   of   the   undis turbed  molecule  are w e l l  descr ibed  by a r i g i d - r o t o r  

model ( sugges t ing   t ha t   t he   ro t a t iona l  and v ibra t iona l   mot ions   a re   separ -  

a b l e ) ,  and the   molecular   p roper t ies  are such   t ha t   v ib ra t iona l   ene rgy  i s  

t r aded   ma in ly   w i th   t r ans l a t ion ,   t he   d i spa r i ty   be tween  a co l l inear   and  a 

three-dimensional  theory is no t   expec ted   t o   be   ve ry   s ens i t i ve   t o   t he   i n i t i a l  

v i b r a t i o n a l  quantum  number. Chapter 6 p r o v i d e s   g r e a t e r   i n s i g h t   i n t o   t h e  

necessary  condi t ions.   For   our   purposes ,   the   col l inear   predict ions are 

normalized  according  to   the  ra t io  k /dl thus  avoiding  the  predic-  

t i o n  of abso lu te  rate coe f f i c i en t s   and ,   hope fu l ly ,  much of t he   abso lu t e  

msm-1 

e r r o r   a s s o c i a t e d   w i t h   t h e   c o l l i n e a r   r e s t r i c t i o n .  Such a r a t i o   a l s o   a b s o r b s  

the  lowest-order quantum-number dependence  suggested  by  equation  (5.1). 
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5.1.3  Thermally  Averaged Rate Coef f i c i en t s  from a Col l inear   Semic lass ica l  

Model 

With the   poss ib le   except ion   of   molecular  beam ana lyses ,   t he   app l i ca t ions  

o f   a n   i n e l a s t i c   c o l l i s i o n  model u s u a l l y   r e q u i r e   r e s u l t s   i n   t h e   f o r m   o f  a 

thermally  averaged rate c o e f f i c i e n t .  A general   formulat ion of the  averaging 

i n t e g r a l  is w e l l  known, b u t   h e r e   t h e   r e s t r i c t i o n   t o   c o l l i n e a r   t r a j e c t o r i e s  

and the  use  of  a semiclassical approximation  require some spec ia l   cons idera-  

t ion.   General ly ,   the  rate c o e f f i c i e n t   f o r  a kinet ic   temperature  T may be 

w r i t t e n   i n  terms of  the  energy  parameter ern = E /kT  and  an  energy-dependent m 
c r o s s   s e c t i o n  u(&),  where  n   denotes   the  f inal  quantum state and Em 

mtn 

is the   r e l a t ive   k ine t i c   ene rgy   be fo re  a co l l i s ion   wi th   an   undis turbed  

o s c i l l a t o r   i n  a pu re   e igens t a t e  m. The rate c o e f f i c i e n t  is then similar t o  

equat ion ( 2 . 2 ) ,  t h a t  is, 
ce 

0 

where  the  average  thermal  speed i s  C = (8kT/.rrp) and p is the  reduced 
- 

c o l l i s i o n  mass defined by equat ion ( 2 . 3 ) .  A fur ther   requi rement   for   the  

c o l l i s i o n  model is  t h a t  i t  conform t o   t h e   d e t a i l e d   b a l a n c e   r e l a t i o n s .  

Originat ing  with  the  reciproci ty   theorem,  the  requirements   of   detai led 

balance  propagate  through  three levels of   microscopic   de ta i l ,   g iv ing   the  

gene ra l   phys i ca l   r e l a t ions   fo r   sp in l e s s   nondegene ra t e   co l l i s ion   pa r tne r s  as 

(5.3a) 

(5.3b) 

( 5 . 3 4  
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where is t h e   t r a n s i t i o n   p r o b a b i l i t y   f r o m  state m t o  n  and hw is 

t h e   o s c i l l a t o r   e n e r g y   o f  state m. 

p- m 

The c o l l i n e a r   c o l l i s i o n  geometry  produces semiclassical t r a n s i t i o n  

p r o b a b i l i t i e s   t h a t   b e h a v e   a c c o r d i n g   t o   e q u a t i o n  (5.3a), b u t   t h e   r e s t r i c t i o n  

t o  a zero  impact  parameter leaves the   c ros s   s ec t ion   r equ i r ed  by equation  (5.2) 

undefined. One  common s o l u t i o n  i s  to   adopt   an   e f fec t ive   hard-sphere   c ross  

s e c t i o n  u and  compute t h e   i n e l a s t i c   c r o s s   s e c t i o n   a c c o r d i n g   t o  
0 

and 

U(En) = 0 ' P ( q )  
n-m O n-m 

Equat ion  (5 .3b)   requires   that  

(5.4a) 

(5.4b) 

U' = [ l  + R ( u  - u ~ ) / E ~ ] u ,  
0 n 

thus  suggest ing  that   the   "hard-sphere"   s ize   must   depend  on  the  col l is ion 

energy   and   t rans i t ion   in   ques t ion!   This   cont rad ic t ion   resu l t s   f rom  the  

co l l inear   approximat ion ,   bu t   the   e r ror  is n e g l i g i b l e  when Ih (w, - urn) l/En << 1. 

When t h e   r a t i o   a p p r o a c h e s   u n i t y ,   t h e   t r a n s i t i o n   p r o b a b i l i t y  is t y p i c a l l y  so 

small t h a t   t h e   i n t e g r a l   i n   e q u a t i o n  (5.2) i s  unaffected.  

Equation (5.2) must  be  modified  further  to  compensate  for  the  lack~.of . .  

energy  conservat ion  inherent   in   the  semiclassical   approximation.  This 

discrepancy is e a s i l y  and accu ra t e ly   co r rec t ed  by i n t e r p r e t i n g   t h e  semi- 

classical r e l a t i v e   c o l l i s i o n   e n e r g y  E or   speed  ii as an  average  of  the 
- 

i n i t i a l  and f ina l   va lues .  The r e s u l t s   i n   c h a p t e r  4 demonst ra te   tha t ,   whi le  

the   cor rec t ion   can   be   l a rge ,   the  method  of averaging  has  no appa ren t   e f f ec t  

on   t he   ou tcome   fo r   v ib ra t iona l ly   i ne l a s t i c   co l l i s ions  a t  al?energies  from 
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th reshold  up t o   t h e  l i m i t s  of p rac t i ca l   i n t e re s t .   Fo r   conven ience ,  w e  use 

an ar i thmetic   energy  average.   Denot ing  the  total   energy as ET, t h e  

semiclassical approximation is brought  into  close  agreement  with  an  equiva- 

l e n t  quantum-mechanical c a l c u l a t i o n  by t h e   i n t e r p r e t a t i o n  

Combining equat ions ( 5 . 2 ) ,  ( 5 . 4 ) ,  and  (5.5)  then  gives  the  thermal  averaging 

p r e s c r i p t i o n   f o r  a c o l l i n e a r  semiclassical c o l l i s i o n  model: 

where E = E/kT and wm = w - w . To make t h e   s a t i s f a c t i o n   o f  equa- 

t i o n   ( 5 . 3 ~ )  by (5.6) more obvious,   the   lower  integrat ion l i m i t  i n  equa- 

t i o n  (5.6)  has  been set to  zero  even  though  the  independent  variable  trans- 

formation  from E t o  E via  equation  (5.5)  produces a limit of 

k Ihwm/2kTI, depending  on  the  sign  of w The negat ive  limit may c l e a r l y  

be reset to   zero,   but   even when t h e  limit is pos i t i ve ,   t he   p robab i l i t y  

th reshold  is nea r ly  twice t h e  limit, so t h a t   a g a i n   s e t t i n g  i t  to   ze ro   has  no 

e f f e c t  on   t he   i n t eg ra l .  

- 
m n 

m 

mn' 

5.2 Analytic  Approximations 

Of t h e  many ana ly t i c   app roaches   appea r ing   i n   t he   l i t e r a tu re   ( s ee   r e f .  45 

for a p a r t i a l  summary), t h r e e   t h a t   s t a n d   o u t   i n   t h e i r   a p p l i c a t i o n   f o r  

e s t ima t ing   t he  V-T rate coe f f i c i en t   va r i a t ions   w i th  quantum  number are 

(a) the   semiempir ical   formulas   for  Morse o s c i l l a t o r s   o f  Keck and Carrier,g4 

(b)   the   per turba t ion   t rea tment   o f  Morse osc i l la tors   deve loped  by Mies,21 and 

(c) t h e   e x a c t   s o l + i o n   t o  a l i nea r ly   fo rced   ha rmon ic   o sc i l l a to r   ob ta ined  by 

Kerner.36 Each approach   re ta ins   one   o r  more o f   t he   a spec t s   o f   spec ia l  

>.. 
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i n t e r e s t   t o   t h i s   a p p l i c a t i o n .  They s h a r e   t h e  common f e a t u r e   t h a t  a l l  

incorporate   col l inear   col l is ion  geometry  and a l l  are based  on  an  exponentially 

r e p u l s i v e   i n t e r a c t i o n   p o t e n t i a l   ( l a t e r   r e f e r r e d   t o  as p o t e n t i a l  I) of t h e  form 

V,(x) = A e -X/L (5.7) 

where   t he   coord ina te s   a r e   de f ined   i n   f i gu re  4.1. 

5.2.1  Keck-Carrier  Formula  for  Anharmonic  Oscillators 

The  formula  obtained by  Keck and Carrierg4 is an adap ta t ion   o f   t he  

dis tor ted-wave  harmonic  osci l la tor   theory of Schwartz e t  aZ. 30 f o r  a Morse 

o s c i l l a t o r .  It i n c l u d e s   a n   e m p i r i c a l   f i t   t o   t h e   n u m e r i c a l   s o l u t i o n   o f  an 

in t eg ra l   equa t ion   fo r   t he   " ad iaba t i c i ty   f ac to r "   and   p rov ides  a p a r t i c u l a r l y  

s imple  formula  for   es t imat ing  s ingle-quantum  t ransi t ion rates from  an 

a r b i t r a r y   i n i t i a l  state. Keck and Carrier made no claim f o r   t h e   s u i t a b i l i t y  

o f   t he i r   fo rmula   i n   app l i ca t ions  beyond a demonst ra t ion   o f   the   ro le   o f  

v ib ra t iona l   nonequ i l ib r ium  in  a d i s s o c i a t i n g  gas;  but   the  formula was subse- 

quent ly   appl ied by Brayg5 i n  a p ioneer ing   and   de ta i led   ca lcu la t ion   of  a 

v ib ra t iona l   r e l axa t ion   p rocess   fo r   anha rmon ic   o sc i l l a to r s ,   appa ren t ly   because  

of i ts  s i m p l i c i t y  and f o r   l a c k  of a b e t t e r  estimate. For similar reasons,  

the  Keck-Carr ier   formula  has   s ince  gained  widespread  use  in   the  detai led 

a n a l y s i s   o f   u p p e r - s t a t e   k i n e t i c s   i n  lasers. 11-15 Its cons idera t ion   here  is 

motivated  primarily by t h e  number of k i n e t i c  models t ha t   i nco rpora t e  it. The 

Keck-Carrier  formula  can  be  writ ten  in a form similar to   equa t ion  (5.1) asg5 

k m,m- 1 
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where F is obtained  from  the  empirical   formula m 

i n  which 

The t r a n s i t i o n  

o s c i l l a t o r  

11 = "w L(u/2kT) 'I2 m,m-l 

frequency w m,m-1 m m-1 = w  "w is  computed f o r  a Morse 

as done  previously  by  the  expression 

2 
w m = w e (m + -$) - wexe (m + $) 

(5.10) 

(5.11) 

5 .2 .2  Mies Pe r tu rba t ion   So lu t ion  f o r  Anharmonic O s c i l l a t o r s  

The closest   approximation  to   the  numerical  model used  here is a 

semic lass ica l   f i r s   t -order   per turba t ion   t rea tment   deve loped  by Mies. 21 It 

proper ly   inc ludes   the   e f fec ts   o f   anharmonic i ty   bu t ,  by t h e   n a t u r e   o f   f i r s t -  

order  methods, i t  neglec ts   the   in f luence   o f  states o the r   t han   t he   des igna ted  

i n i t i a l  and f i n a l  states. Fur thermore ,   to   ob ta in   an   ana ly t ica l   so lu t ion ,   the  

c l a s s i c a l   p a t h  must  be  computed  independently  from  the  motion  of  the  oscil la- 

t o r .  The theory i s  therefore   appl icable   on ly   to   s ing le-quantum  t rans i t ions  

i n  w h i c h   t h e   t r a n s i t i o n   p r o b a b i l i t i e s  are small compared t o   u n i t y .  As 

demonstrated i n   c h a p t e r  4 ,  t h e   i n d e p e n d e n t   c l a s s i c a l   p a t h   f u r t h e r   r e s t r i c t s  

i ts  appl ica t ion   to   near ly   homonuclear   osc i l la tors   such  as CO (and,  of  course, 

a l l  homonuclear  molecules)  colliding  with  atomic particles o f   l i g h t e r  mass 

than   e i ther   o f   the   molecular   nuc le i .  The appearance  of a p r o b a b i l i t y  

maximum s igna ls   the   fa i lure   o f   the   theory .   Despi te   these   shor tcomings ,  we 

s h a l l  see t h a t   t h e  Mies s o l u t i o n  still provides a more useful  approximation 

of   the   numer ica l   p red ic t ions   than   the   o ther   ana ly t ic   formulas   inves t iga ted .  
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A convenient  form  of  the Mies r e s u l t  w a s  given by equat ion (4.12)  and is 

r e w r i t t e n   h e r e   f o r   t h e   t r a n s i t i o n   p r o b a b i l i t y   f r o m  state m to n,  where 

n = r n f l  as 

(5.12) 

As with  the  numerical  model,  equation  (5.12)  produces  energy-dependent 

t r a n s i t i o n   p r o b a b i l i t i e s ,   w h i l e  a temperature-dependent rate c o e f f i c i e n t  is 

desired.  No a n a l y t i c   s o l u t i o n   o f   t h e   i n t e g r a l   e q u a t i o n   ( 5 . 6 )   w i t h  P(E) 
m 

given by equation  (5.12) i s  apparent ,   bu t  a reasonably  accurate   technique 

( l abe led   t he  "method o f   s t eepes t   descen t " )   fo r   ob ta in ing   an   ana ly t i c  

approximationk5 is based  on  the  wel l -def ined maximum contained i n  t h e  

integrand of equation  (5.6).  The value  of E a t  which  the maximum occurs i s  

determined  primarily by the  exponential   arguments.  The remaining  function 

is s lowly  varying  over   the  range of the  integrand  and may be  evaluated at 

t h e   s i n g l e   v a l u e  E loca t ing   the   peak .  The exponential  argument i s  then 

expanded to   second  order   about   the  peak  and  the term i n t e g r a t e d   a n a l y t i c a l l y .  

I n   t h i s   a p p l i c a t i o n ,   t h e   n o t a t i o n  is s i m p l i f i e d   w i t h   t h e   s u b s t i t u t i o n s  

E E h w  /2kT  and TI = "w L ( ~ / 2 k T ) l / ~ .  The exponen t i a l   na tu re  of 

equation  (5.12) i s  a l s o   s i m p l i f i e d  by no t ing   t ha t ,   i n   t he   ene rgy   r ange   where  

the   pe r tu rba t ion   ana lys i s  i s  a p p l i c a b l e ,   t h e   t r a n s i t i o n   p e r i o d  t = 27r/um 
P 

is t y p i c a l l y  less t h a n   t h e   e f f e c t i v e   c o l l i s i o n   p e r i o d  = 2L/U. Thus, 

P 

mn  mn  mn 

t C  

.rrg = tc/tp > 1 and  sinh(7rg) % (1/2)eTg.  Equations  (5.6)  and  (5.12) are then 

combined t o   g i v e  
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The integrand  peak is  loca ted  a t  

(5.14) 

Using  the  procedure  descr ibed,   the   approximate  solut ion  to   equat ion  (5 .13)  

(5.15) 

where = E ~ / I T  and X = E '(Vm - V ) / ( I T E ~ ~ V ~ ~ ) .  The e r r o r   f u n c t i o n   i n  

equation  (5.15) is c l o s e   t o   u n i t y   f o r  most  cases.  Equation  (5.15)  has 

l o g  k o! T-1/3 as expec ted   and   s a t i s f i e s   equa t ion   (5 .3~) .  The temperature 

a t  which a g iven   co l l i s ion   speed  is coinc ident   wi th   the   peak   of   the   in tegrand  

in   equa t ion   (5 .13 )   de f ines   t he  most e f f ec t ive   speed  a t  t h a t   t e m p e r a t u r e ;   t h i s  

temperature w i l l  a l s o   b e   u s e f u l  and  can  be  identified  from  equation  (5.14) 

as 

gP P  P nn 

T = p ~ 3 m a k ~ w m n ~ ~ )  
P 

(5.16) 

Comparisons  of the   approximate   in tegra t ion   in   equa t ion   (5 .13)   wi th   exac t  

numer ica l   in tegra t ions  show tha t   the   approximate  method is most a c c u r a t e  ,at 

low  temperatures. The f i r s t -order   per turba t ion   formula ,   equa t ion   (5 .12) ,  is 

most accu ra t e  a t  low ene rg ie s ,   t hus   fu r the r   con t r ibu t ing   t o   t he   accu racy   o f  

equation  (5.15) a t  low  temperatures. 

5 .2 .3  Kerner  Solution  for  Linearly-Forced Harmonic O s c i l l a t o r s  

The f i n a l   a n a l y t i c   f o r m u l a   t o   b e   c o n s i d e r e d  is a n   e x a c t   s o l u t i o n  

obtained by Kerner36 f o r  a harmonic   osc i l la tor   tha t   undergoes  a f o r c i n g  
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function  linear in the  oscillator  coordinate.  That  condition  may  be  satisfied 

in situations  where  r/L << 1 in  equation (5.7). The  potential  may  then  be 

linearized  according  to 

v(ji,r) = A e-ji’L(l - yr/L)  (5.17) 

Kerner’s  solution  was  applied  by T r e a n ~ r ~ ~  in a semiclassical  collinear 

approximation  using  equation (5.17). Within  the  framework  of  the  collision 

model,  the  resulting  formula  exactly  calculates  the  probability  of  transitions 

between  arbitrary  states  with  the  interaction  of  all  states  included.  Thus, 

it  can  be  applied  at  high  collision  energies  where  the  interactions  of  more 

than  two  states  influence  the  oscillator  dynamics.  Despite  the  approximate 

nature  of  the  harmonic  oscillator  model,  wherein  direct  multiple-quantum 

transitions  and  the  unbalanced  coupling  of  higher  and  lower  states  caused  by 

anharmonicity  are  excluded,  the  Kerner  solution  remains  useful  because  it 

offers  the  only  analytic  means  for  estimating  transition  probabilities  at 

high  energies.  Examples  will  be  shown  where  multiple-quantum  transitions 

and  oscillator  anharmonicity  are  not  dominant,  allowing  accurate  prediction 

by  the  Kerner  solution. 

Kerner  and  Treanor  write  the  probability  for  transitions  between  two 

arbitrary  states m and n as 

Pa = m!n!e-EoEh{x J [(-Eo)j(m - j)!j!(n - j)!]-’! 
0 

(5.18) 
j = o  

where J is  the  lesser  of  the  quantum  numbers m and n. The  parameter 

is the  energy  absorbed  by a classical  harmonic  oscillator  divided  by  one 

quantum  of  vibrational  energy.  For a collinear  collision  and  the  interaction 

of  equation  (5.17), Rappg6  obtains 
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(5.19) 

where  is  the  reduced mass of  the  oscillator  and w is  the  oscillator 

frequency.  The  accuracy  of  the  model,  when  applied  to'highly  excited 

oscillators,  is  substantially  improved  if  the  effective  oscillator  frequency 

is corrected  for  anharmonicity  for  each  initial  state m according  to 

w = we(l - 2xem).  Without  the  correction,  the  excited-state  rate  coefficients 
would  simply  behave  according  to  the  Landau-Teller  relation,  equation (5.1), 

at  low  temperatures  where  the  effective  values  of E are  all  less  than 

unity  and  give k 

Kerner  formula  is  its  incompatibility  with  the  approximate  integration  method 

of  equation ( 5 . 6 )  for  obtaining a rate  coefficient. A simplified  version of 

equation (5.18), assuming E << 1, permits  an  approximate  analytical 

solution.  However,  the  calculations  are  then  restricted to a thermal  range 

where  multiple-quantum  effects  are  insignificant  and  the  theory  loses  its 

advantages  over  perturbation  solutions.  In  the  comparisons  to  follow,  we 

have  therefore  resorted  to a numerical  integration  of  equation ( 5 . 6 )  when 

the  Kerner  solution  is  applied. 

0 

m,m- 0 
< 1 for  large E . An  inconvenience  of  the 

0 

0 

5.3 Comparisons  with  CO-He  Experiments 

In  this  section,  the  ability  of  the  theoretical  model  to  reproduce 

experimental  rate  coefficients  is  tested.  Unlike  past  comparisons  of 

vibrational  rate  coefficients  with  theory,  we  now  have  access  to  at  least 

one  set of experimental  values  for  excited  initial  state^.^ To  test  the 

consistency  of  the  theory  and  experiment  for  all  vibrational  states,  however, 

the  effective  interaction  range L and  the  hard-sphere  cross  section u 
0 
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are  determined  from  the  abundant  collection  of  measurements  dominated  by 

transitions  between  the  ground  state  and  first  vibrational  state.  The 

interaction  parameters  required  to  match  the  ground-state  experiments  are 

then  applied  in  comparisons  with  the  excited-state  rate  measurements. 

5.3.1  Effective  Interaction  Potential  Parameters 

The  computational  convenience  gained  from  the  simplified  interaction 

potential I, equation (5.7), justifies  its  use,  but as a  consequence  of  its 

simplified  form,  the  predicted  rate  coefficients  cannot  be  expected  to 

reproduce  the  experiments  at  all  kinetic  temperatures.  Transitions  induced 

in  an  oscillator  depend  to  a  large  extent  on  the  potential  gradient  near 

the  distance  of  closest  approach;  while  in  a  collinear  collision,  the  distance 

of  closest  approach  is  determined  solely  by  the  coordinate  where  the  poten- 

tial  magnitude  equals  the  initial  kinetic  energy  of  the  collision.  Thus 

both  potential  features  are  important.  However,  the  magnitude  of  a  purely 

repulsive  potential,  such  as  equation (5.7), and  that  of  a  more  realistic 

potential  with  an  attractive  well  may  be  the  same  at  the  closest  approach 

distance,  but  have  a  significantly  different  gradient.  Consequently,  where 

collisions  are  averaged  over  a  range  of  energies,  the  predicted  variation 

of  rate  coefficients  with  kinetic  temperature  will be different  for  the 

two  potentials.  By  matching  theory  and  experiment  in  several  thermal 

ranges,  and  by  using  more  than  one  potential  form,  an  indication of the 

degree  of  uncertainty  in  rate  coefficients  attributable to potential  errors 

can  be  obtained.  For  that  purpose,  we  consider  a  second  potential  given  by 

(x,") /L (xe-x> /2L 
VII(x) = D e - 2D e (5.20) 
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Potential I1 is a  Morse-type  interaction  with  an  attractive  well  of  depth 

-D at coordinate  x . As with  equation (5.7), the  exponential  form  allows 

matrix  elements  to  be  calculated  analytically. 
e 

Predictions  by  the  numerical  anharmonic  oscillator  model  with  the 

oscillator  initially  in  the  first  eigenstate  m = 1 are  compared  with 

experiment  in  figure 5.1. When  potential I, equation (5.7), is  used,  the 

rate  coefficients  are  independent  of  the  magnitude A, so that  only  the  range 

L requires  specification.  Similarly,  the  predictions  using  potential I1 

are  independent  of  x  but  require  both L and  D  to  be  specified.  The  value 

D/k = 100 K is  representative  of  well  depths  inferred  from  viscosity 

measurements.80  The  two  potential  gradients  are  different  by  about 20 percent 

at  closest  approach  for  the  typical  conditions  considered.  Figure  5.1 

demonstrates  the  expected  results. No unique  set  of  potential  parameters 

reproduces  the  experiments  over  the  complete  thermal  range,  but  the  more 

realistic  potential I1 comes  the  closes.  The  required  values  of L fall 

between 0.02 and 0.03 nm,  depending  on  the  thermal  range  considered. 

e’ 

A s  an  interesting  aside,  note  that  the  low-temperature  departure  of 

the  experimental  rate  from  a  variation  proportional  to  T-’I3  is  also 

followed  by  the  theory  using  simple  repulsive  potentials. As Shing7  points 

out,  these  low-temperature  departures  do  not  necessarily  depend on weak 

attractive  forces  normally  omitted  from  the  interaction  potential;  they  even 

occur  with  a  repulsive  potential  when  the  thermal  averaging  integration  is 

done  accurately  for  low  collision  energies.  We  know,  however,  that  real 

interaction  potentials  usually  contain  an  attractive  component  and  it  will 

augment  this  low-temperature  behavior. 
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Figure 5.1.- A comparison  of  experimental  rate  coefficients  for CO(M = 1)-He 
transitions  to  the  ground  vibrational  state  with  predictions  from  the 
numerical  model  of  chapter 4 .  The solid  and  long-short  dashed  lines 
were  computed  using  the  repulsive  interaction  potential I, equation 
(5.7). The  short-dashed  line was computed  using  the  Morse  interaction 
potential 11, equation (5.20).  Hard-sphere  collision  cross  sections 
were  chosen  for  each  potential  to  match  the  experiment  at T = 1000 K. 
Experimental  values  are  from: o reference  16, reference  17a, 
A reference  17b, + reference  17c. 

5.3.2  Comparisons  with  Excited-State  Rate  Measurements 

Normalized  rate  coefficients,  predicted  for  initially  excited CO at 

T = 300 K, are  compared  in  figure  5.2  with  the  room  temperature  measurements 

of  Hancock  and  Smith. l 8  The  parameter k m,m-l’*l, o is  much less sensitive 

t o  interaction  uncertainties  than  the  absolute  rate  coefficients  and  varies 

in a simple,  nearly  linear  manner  with  initial-state  quantum  number  m. 

The  nearly  linear  quantum-number  dependence,  increasing  with m at  room 

temperature,  is  predicted  for  all  the  interaction  potentials  examined  and  is 

believed  to  be  an  accurate  description  of  the  real  behavior. As figure 5.2 
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Figure 5.2.- A  comparison  of  experimental  rate  coefficients  at T = 300 K for 
CO(m)-He  transitions  from  vibrational  states  m to m - 1 with  predictions 
from  the  numerical  model  using  repulsive  potential I, equation  (5.7).  The 
excited-state  data  are  from  reference 18 and  have  been  normalized  using 
the  experimental  k1,o  value  of  Mil1ikenl6,’’  (fig.  5.1). 

shows,  the  experimental  excited-state  values  compare  favorably  in  magnitude 

with  the  predictions,  but  their  trend  is  inconsistent  with  a  linear  extrapo- 

lation to m = 1. A highly  nonlinear  extrapolation  is  contrary  to  any 

prediction  of  the  collision  model  at  any  temperature.  Although  the 

collision  model  contains  many  simplifications  awaiting  refinement,  the 

behavior  implied  by  the  experimental  rates  appears  also to require  further 

verification  and  extension.  In  the  interim,  the  theoretical  predictions 

of  excited-state  rates  seem  to  be  qualitatively  reasonable  and  self  consistent 

Zespite  their  quantitative  uncertainty.  Unfortunately,  their  verification 

by experiment  remains  inconclusive. 

5.4 An  Evaluation  of  the  Analytic  Approximations 

The  computational  expense  of  the  numerical  model  makes  it  impractical  as 

a  general  means  of  estimating  excited-state  rate  coefficients.  Instead,  it  is 
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used  here  as  a  basis  for  evaluating  the  more  convenient  but  less  complete 

analytic  formulas.  The  predicted  rate  coefficient  variations  with  quantum. 

nuniber  for  several  models  are  illustrated in  figure 5.3 for  two  extreme 

temperatures.  The  differences  in  the  various  models  depend  strongly  on  the 

kinetic  temperature,  but  they  all  predict  a  simple  monotonic  change  with 

quantum  number.  The  analytic  approximations  are  therefore  more  clearly 

evaluated  by  choosing  the  highest  initial  quantum  number  of  practical  interest 

and  then  comparing  the  predictions  for  a  range  of  temperatures.  For  CO, 

T = 3 0 0 K  

T = 3 0 0 0 K  

0 5 10 15 20 
INITIAL-STATE VIBRATIONAL QUANTUM NO., m 

Figure 5.3.- The CO(m)-He  rate  coefficient  dependence  on  quantum  number 
predicted  by  several  collision  models.  The  solid  lines  represent  the 
anharmonic  numerical  model,  the  long-short  dashed  lines  represent  the 
Kerner  harmonic  oscillator  solution,36  equation  (5.18),  and  the  dashed 
lines  are  from  the  formula  of  Keck  and  Carrier, 94  equation (5.8). The 
potential  range L = 0.02 nm was  used  in  all  cases. 

Rich e t  aZ.15 have  shown  that  energy  transfer  from  vibrational  levels  as 

high  as  the  twentieth  can  influence  the  net  energy  balance  in  an  electrically 

excited CO laser  system.  Choosing  m = 20 as  an  example,  the  single-quantum 

rate  coefficients  predicted  by  all  the  collision  models  are  compared 
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in figure 5.4. The  independent  parameter  @we/kT)  was  chosen so that 

predictions  by  the  Keck-Carrier  formula,  equation  (5.8),  appear  as  a  nearly 

straight  line. A comparison of the  rates  from  the  numerical  model  using 

T, K 
3000 1000 500 300 200 

I I I I I 

KECK-CARRIER EQ. (5.8) / 
7 KERNER 

D/k 100 K 

Figure 5.4.- A comparison  of  excited-state  rate  coefficients  for 
CO(m = 20)-He  predicted  by  several  collision  models.  The  potential 
range  was L = 0.02  nm  in  all  cases. 

potentials I and I1 shows  the  moderate  sensitivity  of k m,m-l'*l, o to the 
form  of  the  potential  for  one  potential  range L at  all  temperatures.  Not 

shown  is  the  great  sensitivity of the  magnitude of k 

potential  ranges  at  any  temperature.  Note,  however,  that  the  qualitative 

m,m-l'*l, 0 to other 

nature  of  the  predictions  are  undisturbed  by  the form of  the  potential  and 

are  therefore  considered  realistic. As expected,  the  Mies  solution, 

equation  (5.15),  accurately  reproduces  the  numerical  results  at  low  tempera- 

tures,  but  fails  at  higher  temperatures  where  multiple-state  interactions 

begin  to  affect  the  single-quantum  transitions.  The  departure  is  signaled 

when  transition  probabilities  approaching  unity  influence  the  thermal 
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ave rag ing   i n t eg ra l ,   equa t ion  (5.6). Since CO is not  very  anharmonic,   the 

Kerner harmonic  oscil lator  model,   equation  (5.18),   frequency-corrected  for 

anharmonicity a t  m = 20,  works w e l l  over   the  ent i re   thermal   range.   Note  

that  the  anharmonic  correction  must  be  included,  however,  as a l l  p r e d i c t i o n s  

are s i g n i f i c a n t l y   a b o v e   t h e   r e s u l t   s t a t e d  by equat ion  (5.1) f o r  a s ing le -  

f requency   harmonic   osc i l la tor .   F ina l ly ,   f igure  5.4 shows t h a t   t h e  Keck- 

Carrier formula,   equation (5.8), is  too   c rude   an   approximat ion   for   l a rge  

i n i t i a l  quantum  numbers. 

The degree   o f   o sc i l l a to r   d i s to r t ion   caused  by t h e   c o l l i s i o n  of a l i g h t  

helium  atom  with a CO molecu le   has   an   i n s ign i f i can t   e f f ec t   on   t he  classical 

t r a j e c t o r y .   T h i s   f a c t  is made evident  by t h e  small d i f f e r e n c e  a t  low 

temperatures  between  the  numerical model  (where t h e   e f f e c t  i s  included)  and 

t h e  Mies s o l u t i o n  (where i t  is neglected).  An example i n  which  the  coupling 

is l a r g e r  i s  i l l u s t r a t e d   i n   f i g u r e  5.5 f o r  CO(m = 20)-Ar c o l l i s i o n s .   I n   t h i s  

T, K 
3000 1000 500 300 200 

1000 r I I I I I 

KECK-CARRIER EQ. (5.8) 
NUMERICAL 
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Figure 5.5.- A comparison of exc i t ed - s t a t e  rate c o e f f i c i e n t s   f o r  
CO(m = 20)-Ar. P o t e n t i a l  I, equat ion (5.7), w a s  used  with 
L = 0.02 nm i n  a l l  cases .  
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situation,  none  of  the  analytic  models  do  well  at  low  temperatures  because 

the  effects  of  oscillator  distortion  on  the  classical  path  modifies  the 

transition  probabilities  even  near  threshold.  The  small  corrections  are 

then  greatly  amplified  by  the  thermal  averaging  integral  at  low  temperatures. 

The.smal1 anharmonicity of CO(xe = 0.0062) has  influenced  the  preceding 

examples  mainly  by  altering  the  energy  spacing  between  excited  eigenstatea. 

Anharmonicity  also  modifies  the  absolute  magnitude  of  the  rate  coefficients, 

but  that  effect  is  not  apparent  in  km,m-l/mkl,o. An example  in  which  the 

anharmonicity  is  large  is  illustrated  in  figure 5.6 for H2(m = 10)-He 

(xe = 0.0268). In  this  case,  the  frequency-corrected  harmonic  oscillator 

model  is  inaccurate  at  all  temperatures.  The  large  spacing  between  eigen- 

energies  in H suppresses  the  onset  of  multistate  interactions 2 

0 100 I 

MODEL 

0 I 2 3 4 5 6 
I I I I I 

Figure 5.6.- A comparison of excited-state  rate  coefficients  for 
HZ(m = 10)-He. Potential I, equation (5.7), was  used  with 
L = 0.02 nm in  all  cases. 
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at  high  temperatures,  making  the  Mies  solution an  accurate  reproduction of 

the  numerical  results  over  the  entire  thermal  range.  The  difference  in mass 

between  the He and H nuclei  produces  only  moderate  coupling  between  the 

compressed  oscillator  and  the  classical  path  (e.g.,  see fig. 4.2). 

As the  preceding  comparisons  indicate,  one  cannot  generally  choose a 

single  analytic  model  for  estimating  excited-state  rate  coefficients  that 

is  applicable  to  all  collision  pairs.  The  situations  where a model  should 

not  be  used  are  easier  to  identify.  Clearly,  the  Keck-Carrier  formula, 

equation (5.8), is  too  approximate  in  all  the  examples.  The  Kerner  harmonic 

oscillator  solution,  equation  (5.18),  with  anharmonicity-corrected  frequen- 

cies  is  reasonably  accurate  unless  the  anharmonicity  is  large.  The  Mies 

anharmonic  oscillator  solution,  equation  (5.15),  is a poor  approximation 

when  multiple-state  interactions  become  important.  Finally,  no  analytic 

model  based  on  the  semiclassical  approximation  will  be  realistic  when  the 

oscillator  dynamics  have a significant  influence  on  the  classical  path of 

the  incident  particle.  This  restriction  limits  all  the  models  considered 

to  collision  pairs  in  which  the  mass  of  the  incident  particle  is  not 

significantly  greater  than  the  mass of the  impacted  nucleus  and  to  oscilla- 

tors  that  are  not  extremely  heteronuclear. 

5.5  Multiple-Quantum  Transitions 

In the  preceding  section,  only  transitions  to  an  adjacent  state  were 

examined.  Here,  we  investigate  the  relative  importance  of  multiple-quantum 

transitions,  particularly  for  oscillators  in  highly  excited  states.  The 

probabilities  of  multiple-quantum  transitions  are  compared  in  figure 5.7 

both  for  CO(m)-He  collisions  in  which  the  oscillator  is  initially  in  an 
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Figure 5.7.-  Multiple-quantum  transition  probabilities  for  CO(m)-He 
collisions  using  the  anharmonic  numerical  model  with  potential I and 
L = 0.02 nm.  The  effective  temperature  Tp  locates  the  most  effective 
collision  speed  contributing  to  the  thermally  averaged  rate  coefficient 
at  the  temperature  designated. 

excited  state  and  in  states  near  the  ground  state.  The  collision  speeds 

contributing  most  to  the  thermally  averaged  rate  coefficient  at a selected 

temperature  are  indicated  by  the  effective  temperature T In  the  thermal 

range  considered,  multiple-quantum  transitions  to  the  ground  state  are  always 
P' 

improbable  compared  to  single-quantum  transitions  from  the  first  vibrational 

level,  but  the  situation  is  clearly  different  when  the  oscillator  is 

initially  in  the  twentieth  quantum  state.  However,  thermally  averaging  the 

transition  probabilities  in  figure  5.7  reduces  the  apparent  importance of 

multiple-quantum  transitions in a relaxation  process.  Figure 5.8 illustrates 

the  resulting  rate  coefficients  for two potential  ranges,  using  potential I 

and  values  of cro obtained  from  the  experimental  match  in  figure  5.1  at 

T = 1000 K. The  amplified  uncertainty  caused  by  the  interaction  potential 
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Figure 5.8.- Multiple-quantum  rate  coefficients  for  CO(m)-He.  Potential I 
was  used  in  the  anharmonic  numerical  model.  The  hard-sphere  cross-section 
values a0 for  each  potential  range  are  those  required  to  match  the 
experimental  rates  in  figure 5.1 at T = 1000 K. 

and  its  influence on the  implied  value  of uo is  most  obvious,  but  the 

qualitative  features  are  again  consistent  for  both  potential  ranges.  For 

oscillators  like  CO,  multiple-quantum  transitions  provide a significant 

path  for  energy  transfer  only  at  very  high  temperatures  according  to  these 

predict  ions. 

A temperature  marking  the  onset  of  competitive  multiple-quantum 

transitions  is  the  characteristic  vibrational  temperature  of  the  oscillator, 

here  defined  as 8 = fiwe/k  (for  CO, 8 = 3122 K). An oscillator  in  which 

multiple-quantum  transitions  will  dominate  the  relaxation  process  can  then  be 
V V 

identified if BV is  small  compared  to  the  thermal  range of interest.  One 

extreme  example  is Br2 for  which BV = 465 K. Since  the  anharmonicity  is 

also  small  in  Br2(xe = 0.0033), the  Kerner  harmonic  oscillator  model  has 
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been  used  to  obtain  the  Brp-He  rate  coefficients  displayed  in  figure 5 . 9 .  

Two- and  three-quantum  transitions  from  the  tenth  vibrational  level  are 

shown  to  be  significant  even  at  room  temperature,  and  the  temperature 

dependence of the  single-quantum  rate (m + n = 10 + 9 )  is  inverted by 

multiple-state  interactions  when  compared  with  the  dependence  shown  in 

figure 5 . 8 .  The  high  probability  of  multiple-quantum  transitions in this 

case  contributes  to  the  extremely  fast  and  thermally  insensitive  relaxation 

rates  measured  in  the  halogens  and  it  destroys  the  concept of a single 

"relaxation  time"  that  is  independent  of  the  nonequilibrium  state of the 

process  for  molecules  of  this  type. 

Figure 5 . 9 . -  Multiple-quantum  rate  coefficients  for  Br  (m)-He  predicted 
using  the  Kerner  harmonic  oscillator  solution,  equatfon  (5.18),  with 
L = 0.02 nm. 

5 . 6  Concluding  Remarks 

We  have  relied  on a collinear  semiclassical  model  for  vibrationally 

inelastic  collisions  entirely  for  pragmatic  reasons.  The  collinear  geometry 
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affords   an  economical ly   reasonable  means of e s t ima t ing  V-T rate c o e f f i c i e n t s  

for   exc i ted   molecules   and   the   semic lass ica l   approximat ion  is easi ly   reduced 

t o   p r a c t i c a l   a n a l y t i c   s o l u t i o n s .  While t h e s e   s i m p l i f i c a t i o n s   c l e a r l y  

obv ia t e   t he   quan t i t a t ive   accu racy  of the   ca lcu la t ions ,   no   se r ious   omiss ion  

o the r   t han   ro t a t iona l   coup l ing  i s  appa ren t   t ha t  would  modify t h e i r   q u a l i t a t i v e  

na ture ,   even   in   the   p resence   o f   uncer ta in   in te rac t ion   po ten t ia l s .   Unfor tu-  

na te ly ,   an   a t tempt   to   conf i rm  the   p red ic ted   fea tures   th rough  exper imenta l  com- 

par i son  w a s  inconclus ive .  However, t he   expe r imen ta l   cond i t ions   t ha t  would 

test the  model  most severely  can a t  least be  identified.   For  example,   the 

choice of c o l l i s i o n   p a r t n e r   h a s  a l a r g e   i n f l u e n c e  on t h e  rate coe f f i c i en t   s en -  

s i t i v i t y   t o   i n i t i a l  quantum  number.  Note t h e   l a r g e   d e v i a t i o n s  of k m,m-l 1 ,0  /mk 

from u n i t y   i n   f i g u r e  5.5 f o r  CO-Ar compared t o   t h o s e   i n   f i g u r e  5.4 f o r  Co-He. 

Furthermore,   the   increased  osci l la tor   dis tor t ion  caused  by  heavy atom  impact 

r equ i r e s  a more complete   descr ipt ion of t h e   i n t e r a c t i o n   t h a n   n e e d e d   f o r   l i g h t  

atoms. From another   viewpoint ,   the  lesser s e n s i t i v i t y  of some f e a t u r e s  of t h e  

p red ic t ion   t o   unce r t a in t i e s   can   gu ide   t he   cho ice  of   exper imenta l   var iab les   to  

be  emphasized. I n   p a r t i c u l a r ,   a n   a p p a r e n t l y   u n i v e r s a l   f e a t u r e  of t he  V-T 

exc i t ed - s t a t e  rate p r e d i c t i o n s  i s  t h e i r  monotonic  low-order  variation  with 

quantum  number. Once t h i s   f e a t u r e  i s  confirmed,  the  experimental  emphasis 

can   be   sh i f t ed  t o  t h e  less p r e d i c t a b l e   v a r i a t i o n s   w i t h   k i n e t i c   t e m p e r a t u r e .  

F ina l ly ,  a comparison  of  the estimates us ing   var ious   po ten t ia l   parameters  

sugges t s   t ha t  a se l f - cons i s t en t  set of experimental  rates fo r   bo th   h igh  and 

low i n i t i a l  quantum  numbers con ta ins  much more informat ion   tha t   def ines   the  

in t e rac t ion   po ten t i a l   t han   g round-s t a t e  rates alone.  

Comparisons  of t h e   a n a l y t i c  and  numerical rate c o e f f i c i e n t s   g r a p h i c a l l y  

d e l i n e a t e   t h e   s u i t a b l e   r a n g e  of a p p l i c a t i o n   f o r   e a c h   a n a l y t i c  model.  However, 
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t h e   u t i l i t y   o f   a n   a n a l y t i c   a p p r o x i m a t i o n   c a n   a l s o   d e p e n d   o n   t h e   p h y s i c a l  

p roper t ies   o f   the   appl ica t ion .   For   example ,   the   Kerner   harmonic   osc i l la tor  

model,   with  anharmonically  corrected  frequencies,   predicts k /mk 
m,m-1 1 ,o 

w i t h   s u r p r i s i n g   a c c u r a c y   f o r  many molecules ;   bu t   before   the  model can  be 

economica l ly   appl ied ,   an   ana ly t ica l   so lu t ion   to   the   thermal   averaging  

in t eg ra l ,   i nc lud ing   Kerne r ' s   t r ans i t i on   p robab i l i t y   fo rmula ,  awaits develop- 

ment. Even w i t h   t h a t   s o l u t i o n   i n  hand,  one  must  be  concerned  with  the  effect  

of anharmonici ty   for   each  molecule   t reated by t h e  model. On the   o ther   hand ,  

Mies' so lu t ion   fo r   anha rmon ic   o sc i l l a to r s ,   equa t ion   (5 .15 ) ,   f a i l s  a t  high 

temperature. A t  t hose   cond i t ions ,  however, many nonequilibrium  processes 

are i n s e n s i t i v e   t o   t h e  V-T rates of exc i t ed  states,  e i ther   because   the   v ibra-  

t i o n a l  s ta te  p o p u l a t i o n   d i s t r i b u t i o n  is  n e a r l y  Boltzmann o r   because   t he  

process is c o n t r o l l e d  by some separate   energy-transfer  mechanism. A t  lower 

temperatures ,   the  model a c c u r a t e l y   d e a l s   w i t h  a b roade r   r ange   o f   o sc i l l a to r s  

because  anharmonicity is r igorous ly   inc luded .   Col l i s ion   par tners   for   which  

t h e   t h e o r y   f a i l s  are poor ly   t r ea t ed  by a l l  t h e   a n a l y t i c   s o l u t i o n s   b a s e d  on a 

semiclassical approximation.  Similarly,   the  frequently  used  formula 

developed by  Keck and Carrier i s  useful   because  of  i t s  s i m p l i c i t y ,   b u t   t h e  

addi t iona l   computa t ion   requi red  by t h e  Mies s o l u t i o n  is  n o t   p r o h i b i t i v e .  

The series func t ion  O(-g,X) converges  rapidly  and  the  matr ix   e lements  

may be,computed i n  advance. 

Calculat ions  of   mult iple-quantum  t ransi t ion rates from  excited states 

va l ida te   the   assumpt ion   mos t   o f ten  made i n   k i n e t i c  models  of  nonequilibrium 

processes:   they  can  usual ly   be  neglected.  A s  be fo re ,  a t  very  high  tempera- 

tures   where  mult iple-quantum  t ransi t ions become competi t ive,  a nonequilibrium 

process i s  u s u a l l y   n o t   c o n t r o l l e d  by exc i t ed - s t a t e  V-T rates, while  
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ground-state transitions  are s t i l l  dominated by single-quantum steps. 

Molecules with  closely spaced vibrational energy levels, such as the  halogens, 

are  notable  exceptions  requiring  a more careful  analysis. 
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CHAPTER 6 

EFFECTS  OF  ROTATIONAL  TRANSITIONS  ON  VIBRATIONAL  ENERGY  TRANSFER 

The  preceding  chapters  have  utilized a collinear  collision  model  in  which 

vibrational  motion  was  the  only form of  energy  transferred  during a collision, 

and,  indeed,  in  many  cases  it  is.  However,  the  use  of a one-dimensional  col- 

lision  geometry  renders  the  model  incomplete  in  the  sense  that  cross  sections 

and  rate  coefficients  cannot  be  obtained  directly,  but  require  artificial 

three-dimensional  parameters  such  as  steric  factors  or  hard-sphere  cross 

sections  that  must  be  estimated  by  some  other  means. 

From a more  physical  point  of  view,  collisions  with  sufficient  energy t o  

induce  vibrational  transitions  will  simultaneously  cause  numerous  transitions 

among  the  more  closely  spaced  rotational  states,  thus  invoking  an  additional 

energy  sink  not  represented  in  the  collinear  models.  This  chapter  investi- 

gates  the  influence  of  rotational  motion  on  the  net  rate  of  vibrational  energy 

transfer. It is  motivated  by a need  to  assess  the  validity  of  the  collinear 

models  since  they  remain  the  most  practical  means  for  predicting  vibrational 

rate  coefficients  in a kinetic  analysis.  With  that  motivation,  emphasis  is 

directed  here  toward  the  net  rate  of  vibrational  energy  transfer  summed  oqer 

all  final  rotational  states,  rather  than  individual  vibration-rotation  transi- *.- 

tional  rates,  since  only  the  former  can  be  compared  with  the  collinear 

predictions. 

In  the  sections  to  follow, a semiclassical  three-dimensional  collision . 

model  is  first  developed  in  detail. It is  followed  by a description of some 

approximations  that  significantly  reduce  the  number  of  coupled  states  neces- 

sary  to  obtain a complete  solution,  thus  making  numerical  results  practical. 



The  collision  dynamics  are  then  studied  for  molecular  types  that  represent  all 

extremes  in  the  role  of  rotational  motion  on  vibrational  transition  rates. 

The  role  of  rotational  coupling  is  summarized  and  categorized  in  conceptual 

terms  in  the  final  section  and  the  common  characteristics of all  related  V-R-T 

mechanisms  are  discussed. . 

6.1 Vibration-Rotation  Collision  Model 

A three-dimensional,  vibration-rotation  collision  model  is  formulated 

here  within  the  semiclassical  framework  described  in  appendix B and  based  on 

the  following  underlying  concepts:  the  incident  particle  is  considered  struc- 

tureless  while  the  target  is  a  diatomic  heteronuclear  molecule. A natural 

parameter  for  measuring  the  heteronuclear  nature  of  the  molecule  is  its mass 

ratio 

Y = mc/(q, + mc> 

where % and  mc  are  the  nuclear  masses  and  mc 2 q,. The  inertial  proper- 

ties  of  the  molecule  are  modeled  by  a Morse-oscillator/rigid-rotor description 

(discussed  in  ch. 3 ) .  The  collision  geometry  is  described  classically 

with  the  associated  coordinates  shown  in  figure 3 . 4  as  viewed  in  a  rotating 

interaction  plane  containing  all  three  nuclei.  The  classical  trajectory  is 

assumed  to  be  dominated  by  the  spherically  symmetric  component of the  interac- 

tion  potential  and  is  determined  from  just  those  terms.  Consequently,  the 

relative  path  remains  in  a  single  plane  and  the  subsequent  formulation  is 

greatly  simplified.  These  concepts  are  reflected  in  an  illustration  of  the 

collision  geometry  shown  in  figure  6.1,  where  it  is  viewed  from  a  space-fixed 

position  in  a  center-of-mass  reference  frame  aligned  with  the  plane  of  the 

trajectory. 
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'TRAJECTORY \ii 
PLANE 

- 
Figure  6.1-  Three-dimensional  encounter  nomenclature  and  geometry  as  viewed 

~ 

from  a  fixed  position  in  the  center-of-mass  reference  frame.  The x',y' 
plane  contains  the  molecular  mass  center  and  the  incident  particle  path. 
Only  the  portion of the  molecule  above  the  plane  is  shown. 

The  detailed  formulation  of  a  semiclassical  model  divides  logically  into 

three  main  parts - one  defining  the  nature of the  interaction  potential 

between  the  colliding  pair,  one  detailing  the  quantized  motion  of  the  molecule 

in  response  to  a  time-dependent  disturbance,  and  one  describing  the  classical 

motion  of  the  incident  particle  that  produces  the  disturbance.  The  descrip- 

tion to follow  proceeds  in  the  same  order. 

6.1.1 Interaction  Potential 

A comparison  of  the  predictions  from  the  collinear  model  described  in 

chapter 4 with  those  of  a  three-dimensional  model  will  be  most  meaningful if 

the  interaction  potentials  are  similar.  We  therefore  make  use  of  the  expo- 

nentially  repulsive  and  pairwise  additive  interaction  discussed  in  chapter 3 

and  write,  with  reference  to  figure 3 . 4 ,  



. . . "" 

To convenient ly   separate   the  molecular   dynamics  f rom  the  c lass ical   motion,  ' 

however ,   equat ion  (6 .1)   must   be  expressed  expl ic i t ly   in  terms of coord ina tes  

desc r ib ing  each of the motions  separately.  To t h i s  end, we have shown i n  

chap te r  3 t h a t   e q u a t i o n   ( 6 . 1 )   c a n   b e   r e p r e s e n t e d   t o   f i r s t - o r d e r   i n  r / Z  by 

a 

where   t he   r e l a t ive   ang le ,  6 ,  is re l a t ed   t o   t he   space - f ixed   coord ina te   ang le s   i n  

f igu re   6 .1  by 

cos 6 = s i n  8 cos($  - 52) (6.3) 

Equa t ion   (6 .2 )   exp res ses   t he   po ten t i a l   i n   t he   des i r ed   exp l i c i t  form. However, 

to  a id   the   fo l lowing   separa t ion   of   dynamica l   equa t ions   in to   coord ina tes   tha t  

descr ibe   the   mot ion   of   each   co l l i s ion   par tner ,  we sha l l   t empora r i ly   deno te   t he  

p o t e n t i a l  by an   equiva len t   no ta t ion   V ' (E , r ,6 )  E V'(q,t)   where q = q(r,f3,@) 

loca te s   t he   mo lecu le   i n   con f igu ra t ion   space  and t emphasizes  the  temporal 

dependence  of   the  t ra jectory  coordinates ,  Z( t )  and G ( t ) ,   a p p e a r i n g   i n  equa- 

tions  (6.2)  and  (6.3). 

- 

-t + +  

6.1.2 Quantized  Molecular Dynamics 

I n  appendix B,  w e  show that   the   quantuwmechanical   equat ion  of   motion may 

be  reduced  to  a set o f   d i f f e r e n t i a l   e q u a t i o n s  - one f o r   e a c h  bound e i g e n s t a t e  

of  the uii'dtisturbed  molecule - i n ' t e rms   o f   t he   p robab i l i t y   ampl i tudes   a s soc ia t ed  

with  each bound state.  The r e s u l t  is 

where t h e   b r a c k e t   n o t a t i o n   r e f e r s   t o  
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integrated  over  all q space  and $n is  an  eigenfunction  of  the  undisturbed 

molecule  determined  by  the  intramolecular  potential, Vo(r). As in  chapter 4, 

the  intramolecular  potential  is  modeled  by  the  Morse  function: 

+ 

1 

Combined with a rigid-rotor  description  of  the  molecular  rotational  motion, 

the  eigenfunctions $n are  then  determined  by  thrse  Guantum  numbers  IvRm) 

and  have  their  eigenfrequency  given  by 

w Vll = + +) - + +)* + BeR(R + 1) 

The  remaining  task,  leading  to  solutions  for  equation (6.4), is  then  to  evalu- 

ate  the  matrix  elements  defined  by  equation  (6.5)  in  terms  of  the  fundamental 

collisional  and  molecular  parameters. 

The  numerical  labor  of  solving  equation  (6.4)  will  be  reduced  greatly  if 

the  matrix  elements  can  be  factored  into a time-dependent  term  obtained  classi- 

cally  and  state-dependent  terms  containing  all  the  quantum-mechanical  spatial 

integrals.  The  spatial  integration  may  then  be  completed  independently  and  in 

advance  for  transitions  between  all  eigenstates  in  the  basis  set. A step  in 

that  direction  is  taken  by  writing 

(j/V'(G,t)ln) = U(b,t)Vt (t) 
jn (6.8) 

where,  from  the  potentia1,given  by,equation (6.2),  the  right-hand  terms a m  7.<. 

U(b,t) = A e -%(b, t) /L (6.9) 

and 

(6.10) 

with a1 = Y and a2 = -(1 - Y). Clearly,  the  function  U(b,t)  can  be 

obtained  classically,  but  the  expression  for V! (t) must  now  be  developed  to Jn 
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. . .. . . . 

f u r t h e r   i s o l a t e  i ts time dependence. A u s e f u l   a i d  w i l l  be   the   expans ion   of  

e i n  terms of  Legendre  polynomials  PJ(c0s 6 )  given by equation  (3.30).  

In   t he   p re sen t   no ta t ion ,   t he   expans ion  is  

z cos 6 

r J a - cos 6 
i L  e = 5 (%) (25  + 1) i J ( a i  z> pJ(cos 6 )  

J= 0 

(6.11) 

where  iJ(air/L) i s  a s p h e r i c a l  Bessel f u n c t i o n   o f   t h e   f i r s t   k i n d .  73 

Reca l l ing   t ha t   In )   r e f e r s   t o  a v i b r a t i o n - r o t a t i o n  s ta te  with quantum 

numbers IvRm) and tha t   the   molecule  i s  represented as a Morse-osci l la tor /  

r i g i d   r o t o r ,   t h e   e i g e n f u n c t i o n s   r e p r e s e n t e d   i n   e q u a t i o n  (6.10) may be   f ac to red  

i n   t h e   t r a d i t i o n a l  manner accord ing   to  

q r )  
$vRm(r' 8, @)  = ___ r YRm@ , 9) (6.12) 

The f ac to r i za t ion ,   i n   con junc t ion   w i th   equa t ion   (6 .11 ) ,   t hen   a l lows   t he  matrix 

elements  to  be  represented as a sum of  products  given  by 

m 

( t )  = (25 + l > R v I v  T R I m I R m  v:f E ' m ' v R m  
(J) (J) 

J= 0 

( 6 . 1 3 )  

where 

(6 .14 )  

is a radial   matrix  independent  of time and , . . _ L  

T~ 1mI Em (J) ( t )  = (R 'm '  1pJ(cos 6 )  I R m )  (6.15) 

i s  a sphe r i ca l   ma t r ix   e l emen t   con ta in ing   t he   t r a j ec to ry   coord ina te   Q( t )   v i a  

equat ion  (6 .3) .  The remaining  discussion i s  divided  into  separate   develop-  

- 

ments  of  each  element. 
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6.1.2.1  Radial  Matrix  Elements 

The  radial  term  defined  by  equation (6.14) appears i n expanded  form  as 

First  note  that  when  the  molecule  is  homonuclear  (i.e., Y 

term  will  be  nonzero  only  for  even  values  of J and  that 

even J values  for  most  heteronuclear  molecules  where Y 

= 1/2),  the  radial 

it  will  emphasize 

is  nearly  1/2. 

This property  directly  affects  the  probabilities of rotational  transitions. 

To  evaluate  the  spherical  Bessel  functions  in  equation (6.16) in  terms  of  the 

molecular  coordinate r, we note  that  its  arguments  lie  typically  in  the  range 

0 5 air/L ,< 5. Larger  values  are  suppressed  by  the  vibrational  eigenfunctions 

that  approach  zero  at  large  r.  In  this  range of arguments,  the  spherical 

Bessel  functions  may  be  calculated  with  rapid  convergence  by  the  ascending 

J 
Z 2212 iJ(Z) = ( 2 2 1 2 )  J [' + ( 2 5  + 3)  2! (25 + 3)(2J + 5) +- + .  . .] (6.17) 

II (2j + 1) 
j = O  

The  radial  matrix  element  may  then be written  as 

j = O  k= 0 

where  r v'v (m) represents  the  remaining  simplified  integral 

(6.19) 

Equation  (6.19)  is  similar  to  the  integrals  that  define  dipole  matrix  elements 

associated  with  vibrational  band  intensity  calculations  and,  as  such,  it  has 

been  solved  exactly  for  m = 1 and  2  using  Morse  oscillator 
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eigenfunction~.~~~~~ In  principle,  the  integral  can  be  solved  exactly  for  any 

integer  value of m,  but  the  complexity  of  the  solution  increases  and  becomes 

impractical  for  powers  larger  than  m = 2. An iterative  numerical  method  has 

also  been  developed, O0 but  it  becomes  laborious  for  large  quantum  numbers. 

In  appendix  C,  we  derive  an  approximate  closed-form  solution  to  equa- 

tion  (6.19)  with  the  result: 

V'SY 
(m) = Nv'  v r v' v Dsr(A + s + 1) (6.20) 

(aL)m s=o 

where k' = ue/uexe, A = k' - 2 - (v' + v), and I ' (A + s + 1) is  a  gamma  func- 

tion.73  Coefficients  Ds  and  NVlv  contain  elements  of  the  Morse  eigenfunc- 

tions  (defined  in  appendix C). The  derivation  of  equation  (6.20)  depends  only 

on  the  provision  that A >> 1, which  is  easily  obtained  because k' >> 1 for 

all  diatomic  molecules.  Typical  values  of k' range  from  37  for H2 to 161 for 

CO.  Corresponding  errors  in  from  equation  (6.20)  are  1.5  percent  for 

H p  and 0.3 percent  for  CO.  Hence  equation  (6.20)  is  sufficiently  accurate  in 

this  application,  although  some  numerical  difficulties  arise  that  can  limit  its 

use.  For  example,  the  terms of the  summation  in  equation  (6.20)  alternate  in 

sign so that, for large k' and  large  vibrational  quantum  numbers,  small  dif- 

ferences  between  extremely  large  terms  cause  the  loss  of  all  significant  digits. 

The  CDC-7600  computer  with  28  digits  in  double  precision  allowed  equation  (6.20) 

to  be  evaluated  with  at  least  3  accurate  digits  for  vibrational  quantum  num- 

bers  less  than 12  when k' = 161  and  for  all  quantum  numbers  to  the  continuum 

when k' = 37.  In  the  few  cases  when  equation  (6.20)  could  not  be  used,  the 

integral  was  evaluated  with  a  standard  Gauss-Laguerre  quadrature  algo- 

rithmlo1-lo3 of  very  high  accuracy.  (The  author  is  indebted  to  D.  G.  Galant, 

NASA  Ames  Research  Center,  for  developing  the  algorithm.) 
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6.1.2.2  Spherical  Matrix  Elements 

where L is  the  orbital  angular  momentum  operator  and L, is a  component. 

Note  that  the  Legendre  polynomial  in  equation  (6.15)  can  also  be  represented 

as  a  spherical  harmonic  according  to 

PJ(C0S 6 )  = 4- y J , o ( 6 , 0 )  

allowing  the  spherical  matrix  element to be  written  as 

The  solution  to  equation  (6.21)  follows  common  procedures  in  the  mechanics of 

quantized  angular  momentumlo4 9 lo' and  it  is  described  in  detail  in  appendix D. 

The  result  takes  the  form 

where  the  time-independent  term  is 

(6.23) 

Nonzero  values  are  obtained  only  if 

(6.24) 
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The  bracket  symbols  in  equation  (6.23)  are  Wigner  3-j  symbols  that  account 

for  the  vector  coupling  between  the  angular  momentum  states, I R'm' ) and I Rm), 
and  the  trajectory  orbital  momentum  designated  by  J.  They  impose  further 

constraints  associated  with  nonzero  values  of A that  are  listed col- (J) 
R 'm' km 

(6.25) 

6.1.2.3  Complete  Factored  Matrix  Elements 

Factorization  of  the  time-dependent  terms  in  the  complete  matrix  elements 

defined  by  equation (6.8) can  now  be  accomplished  by  defining  a time- 

independent matrix  element  (with  an  unprimed  symbol)  as 

and  writing  the  complete  matrix  element  as 

(v'R'mlV' (q,t) IvRm) = U(b,t)e 
-% -i(m'-m)z(b,t) 

'v'  R'rn'vRrn 

(6.26) 

(6.27) 

The  time-dependent  terms,  U(b,t)  and  E(b,t) , in  equation  (6.27j  are  then 

the  functions  required  from  the  classical  trajectory.  Generally,  they  repre- 

sent  both  an  induced  force  and  an  induced  phase  shift  in  the  molecular  motion, 

where  the  magnitude  of  the  latter  depends  on  the  rotational  transition  con- 

sidered.  However,  the  primary  quantal  properties  of  the  collision  dynamics  are 

determined  by  the  time-independent  matrix  elements  given  by  equation  (6.26). 

For  example,  the  summation  limits  in  equation  (6.26)  reflect  the  constraints 

imposed  by  equations (6.25) and  lead to the  only  significant  selection  rule 

associated  with  vibration-rotation  transitions.  Recall  from  equation (6.16) 
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that,  for  homonuclear  molecules, R(J) is  nonzero  only  when J is  even. Thus, 

nonzero  matrix  elements  and  transition  probabilities  willvoccur for homonuclear 

molecules  only  when 1 1 1 '  - 1 1 1  is even,  according to equation (6 .26 ) .  Simi- 

larly,  for  heteronuclear  molecules,  transitions of even la '  - E l  will  domi- 

nate,  although  odd-increment  quantum  changes  are  allowed  in  those  molecules. 

Other  selection  rules  regarding  intermultiplet  transitions, m'  to m,  are  also 

v v  

implied  by  equation (6 .25)  and  their  accompanying  zeros  may  be  observed  in 

table 6.1, where a typical  transition  matrix is listed.  However,  the  role of 

these degenerate  states  in  determining  the  observable  behavior of a kinetic 

process  is  usually los t  due to subsequent  averaging  and  hence  become  important 

only  in  the  computational aspects of the  collision  model. 

Figures 6 . 2  and 6 . 3  illustrate  some  general  properties of the time- 

independent  matrix  elements  and  allow  one  to  reach some early  conclusions  con- 



Figure 6.2- Variation  of  time-independent  matrix  elements  defined by  equa- 
tion (6.26) with  angular  momentum  quantum  numbers,  for CO with v = 0, 
v' = 1,  and L = 0.02 nm. 
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Figure 6.3.- Variation  of  time-independent  matrix  elements  with A R  = 1 1 1 '  --d 1 ,  
for H, and CO with v = 0 and v' = 1. 
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Figure 6 . 3 .  - Concluded. 

example, f i g u r e  6.2 depic ts   the   var ia t ion   o f   mat r ix   e lements   wi th   p ro jec t ion  

state quantum  number.  These f e a t u r e s  w i l l  be   o f   i n t e re s t  la ter  when methods 

fo r   r educ ing   t he  number of  coupled states i n   t h e   c a l c u l a t i o n  are sought. A t  

t h i s   p o i n t ,  w e  s i m p l y   n o t e   t h a t   t r a n s i t i o n s  from the   co rne r s  where m = fR, 

m' = + a ' ,  and m', m have  the same s i g n   a r e   t h e  dominant rou te  by which  energy 

is t r a n s f e r r e d .  As 11 and 11' i nc rease ,   t he  dominance a l s o   i n c r e a s e s  so t h a t  

in t h e  l i m i t  o f   l a r g e  11, a ' ,  a l l  o t h e r  m f: 211 and m' f 211' states may be 

ignored. 

Another bas ic   aspec t   o f   the   mat r ix   e lements  is i l l u s t r a t e d   i n   f i g -  

u r e s  6.3(a) and  (b)  where  for  both H2 and CO - two extremely  opposi te   molecular  

types - only states wi th  small d i f f e r e n c e s   i n   a n g u l a r  momentum, Al l  (where 
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IIIIII I 1  Ill Ill1 I Ill I I I1 

A R  E I R' - R I )  are  shown  to  share  significant  coupling.  This  feature  persists 
for  all  values  of R, as  shown  by  the  sets  of  symbols  in  figures  6.3,  and  it 

also  holds  for  all  vibrational  transitions.  Note  that  the  emphasis  of  small 

AR transitions  is  independent  of  any  degree  of  resonance  that  may  occur  between 

the  initial  and  final  states  of  the  transition  since  equation  (6.26),  from 

which  these  matrix  elements  are  obtained,  contains no reference  to  the  eigen- 

energies  of  the  transition. 

Nevertheless,  resonance  enhances  the  probability  for  transition.  Its 

effect,  in  combination  with  the  preceding  small A R  constraint  may  be 

anticipated  by  examining  the  relative  vibration-rotation  eigenenergies 

depicted  in  figure  6.4  for  both H2 and CO. Note  that  while  the  transition 

vR + v'R' = 0 , 8  -f 1,0  in  para-H2 is nearly  resonant, A R  = 8 is  too  large  and 

the  coupling  between  these  states  (fig.  6.3(a))  will  be  very  small.  Much 
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Figure  6.4.-  Vibration-rotation  eigenenergies  for  para-H2  and CO. 
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Figure 6.4- Concluded. 

larger A I  will  be  required  in CO to  approach  resonant  transitions  while  the 

restriction  to  small A R  will  make  the  rotational  aspect  of  a  vibrational 

transition  insignificant.  From  these  observations, we may  conclude  that,  while 

transition  probabilities  are  enhanced  by  resonance, vibration-rotation  transi- 

t ions  wi th  smaZ2 A R  wiZ2 dominate the intramoZecuZar  energy transfer  process, 

regmdZess  of  resonance! 

Finally,  we see from  figures  6.3  that,  although  odd A R  transitions  do 

not  occur  in  homonuclear  molecules  where Y = 112, a  slightly  heteronuclear 

molecule  like CO (Y = 0.43)  will  allow  odd A R  transitions  with  only  moderate 

suppression,  as  indicated  by  figure 6.3(b). Hence,  the  selection  rule  regard- 

ing  even A R  transitions  applies  strictly  to  homonuclear  molecules. 

The  foregoing  derivation  of  the  molecular  equations  of  motion  has  explic- 

itly  identified  the  required  trajectory  functions.  We  can  now  proceed  to 

evaluate  those  functions  classically  in  terms  of  the  fundamental  collision 

parameters. 
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6.1,. 3 Classical  Trajectory 

The  classical,  two-body,  central-force  equations of motion  are  obtained 

in  appendix B as 

(6.28) 

(6.29) 

where  the  coordinates  refer  to  figure 6.1 and V(5) is a spherically  symmetric 

version  of  the  interaction  potential.  The  total  energy, E, and  the  correspond- 
ing  initial  speed, 'u = 42E/l~,  are  "effective"  values  averaged  over  the  trajec- 

- 

tory  (as  discussed  in  ch. 4 ) .  

In  this  chapter,  we  shall  not  include  the  dynamic  influence  of  the  mole- 

cule  on  the  incident  particle  motion  as  in  chapter 4. To  do so in  three 

dimensions  would  require a great  deal of artificial  approximation  and  would 

demand  extensive  comparisons  with  exact  quantum-mechanical  solutions  for  vali- 

dation,  as  in  chapter 4 .  Such  an  investigation  is  outside  the  intent  of  this 

chapter.  Instead,  we  use  the  results  in  chapter 4 as a guide  to  those  colli- 

sion  parameters  where  the  dynamic  coupling  is  unimportant  and  confine  the 

examples  used  here  to  only  those  cases. 

The  form  of  the  interaction  potential  necessary  to  determine a trajectory 

is  obtained  here  by  spherically  averaging  the  model  potential  given  in  equa- 

tion  (6.2)  over  all  coordinates  of  the  molecule  in  its  initial  state.  Thus, 
- 
V(Z) = ( i l v l  (&t) li)  (6.30) 

where li> denotes  the  initial  state. By use  of  equation  (6.27),  the  matrix 

element  above may be  rewritten  in  the  more  workable  form: 

(6.31) 
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This  method  of  averaging  the  potential  produces a single  trajectory  for  each 

initial  state  of  the  molecule  and  it  is  independent  of  the  numerous  possible 

final  states.  Transition  probabilities  computed  using  other  methods  of  aver- 

aging  (e.g.,  involving a final  state  designation)  were  found  to  be  only  negli- 

gibly  different  from  those  obtained  with  equation  (6.31)  when  the  energy  trans- 

fe'rred'  inelastically  is  small  compared  to  the  total  energy.  Equation (6.30) is 

an  approximation  consistent  with  the  adopted  classical  equations of.motion 

since  their  accuracy  is  likewise  contingent  on  the  requirement  that  the  energy 

traded  inelastically  remain  small. 

At  this  point,  we  have  the  sufficient  formulation  to  obtain a full 

numerical  solution  of  equation (6.4). However,  the  numerical  integration  of 

a coupled  set of differential  equations  often  proceeds  with  much  less  labor  if 

all  equations  relax  at  intrinsically  similar  rates.  The  selection  of  step 

intervals  in  the  independent  variable (t in  this  case)  is  then  controlled  by 

the  unanimous  behavior  of  all  dependent  variables  rather  than  the  conflicting 

behavior  of  several  dependent-variable  subsets.  (The  amplitudes, cn(t), and 

the  trajectory  coordinates, Z(t) and E(t), are  conflicting  subsets  with  dissirn- 

ilar  relaxation  rates  in  this  case.)  While a set  of  equations  cannot  always  be 

idealized  in  such a manner,  the  numerical  effort  is  reduced  here  significantly 

by  using  approximate  analytic  solutions  of  the  classical  trajectory  equations 

and  solving  only  the,molecular  equations  of  motion  numerically. 

An analytic  solution  of  the  trajectory  equations  is  possible  only  because 

we have  adopted  an  exponential  interaction  potential.with  convenient  analytical 

properties. In most  cases,  however,  nonexponential  potential  functions,  such 

as  the  Lennard-Jones  potential,  equation  (3.22),  can  be  represented  by  an 

exponential  function  over  the  essential  regions  of  interaction  with  acceptable 
. .  
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accuracy. A deve lopmen t   o f   ana ly t i c   so lu t ions   t o   t he   t r a j ec to ry   equa t ions  is 

d e s c r i b e d   i n   d e t a i l  i.n  appendix E. The s o l u t i o n s  are based on f i r s t - o r d e r  

approximations  developed  by  Hansen  and  Pearsonlo6  and later extended by 

. . Sta l l cop .  lo7 Here we- o u t l i n e  the p rocedure   on ly   b r i e f ly  as i t  has  been 

, . adapted i n  t h i s   a p p l i c a t i o n   t o   o b t a i n   t h e   f u n c t i o n s   U ( b , t )  and E(b , t ) .  

The func t ion   U(b , t )   def ined  by equation  (6.9) may f i r s t  be   conver ted   to  

a more convenient  form by n o t i n g   t h a t  a t  c losest   approach t = 0, ? = Xo, and 

dE/dt = 0. Equation  (6.28) may then  be  solved  for  v(jio) t o   o b t a i n  

A e-%o/L V,, = - E [ 1  - (b/%0)2] (6.32) 

Equation  (6.9)  then becomes 
- 
E U(b, t )  = -- [ I  - 

‘ii 

When b = 0, w e  a l so   have   t he   so lu t ion  

(b/%o)21 e 

to   equat ion  (6 .28)  

- (-” x X J / L  

= s e c h 2 ( g )  
- 

, 

(6.33) 

(6.34) 

Hansen  and Pearsonlo6  assumed t h a t  a so lu t ion   to   equa t ion   (6 .28)   for   nonzero  

‘impact parameters w i l i  have a similar form  and  defined a func t ion ,   ab (b , t )  , so 

t h a t ,   f o r  a l l  values  of  b,  

e x xo)/L = sech2  [ab  (b,  t)iit/2L]  (6.35) 
- (”- 

We show i n  appendix E that   an  expansion  of   both  s ides   of   equat ion  (6 .35)  

about t = 0 then   g ives ,   t o   f i r s t -o rde r ,  

%(b,O) = [ l  - (b/Xo)2(1 - 2L/Xo)] 1 /2  (6.36) 

Furthermore,   exact  numerical   solutions  of  equation  (6.28) show t h a t   a b ( b , t )  

v a r i e s  so  s lowly  with t that   equat ion  (6 .36)  may be  used  for a l l  t .  Fig- 

ure   6 .5   i l lus t ra tes   the   accuracy   of   equa t ion   (6 .36)   for   l a rge   impact  param- 

eters where t h e   e r r o r  is g r e a t e s t  and a t  a co l l i s ion   energy   near   th reshold .  
I , D  
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Figure 6 .5 . -  Exact  and  approximate  (eq. (6 .33) )  - trajectory  functions  for  non- 
zero  impact  parameters;  E/AVii = lo+. 

A similar  figure  for  energies 10 times  greater  would  appear  almost  identical. 

Thus,  we  have  the  required  analytic  approximation: 
- ~ 

U(b,t) % - [l - (b/~o)2]sech2[a,,(b,0)lt/2L] E 
'ii 

(6 .37 )  

where  ab(b,O)  is  obtained  from  equation (6 .36)  and %o is  the  positive  root 

of  equation (6 .32 ) .  For  small  impact  parameters  where  the  peak  contribution 

to  vibrational  transition  cross  sections  is  made, X. may  be  approximated  by 

the  analytic  expression  obtained  from  equation (6 .32)  for b = 0; namely 

- x. % 5io(b = 0) = L  Zn (6 .38)  

Figure 6 . 6  indicates  the  range  of  b/L  where  equation (6 .38)  may  be  applied. 

Finally,  for  very  large  b/L  where  b/7co -+ 1, the  classical  path  follows a 

straight  line,  as  figure 6 . 6  indicates,  and  although  equations (6 .36)  

. .  
i .  I 

and (6 .37)  are  still  sufficiently  accurate,  an  alternate  and  more  accurate 

approximation  is 
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Figure 6 . 6 . -  Distances  of  closest  approach. 

The  remaining  trajectory  function  to  be  determined  is Q(b,t). Hansen 
- 

and  Pearsonlo6  obtain  an  analytic  expression  by  expanding Q(b,t) in a Taylor 

series  about t = 0, again  where  the  interaction  is  greatest,  and  keeping  only 

terms  to  first  order.  Thus, 

- 

- 
Q(b,t) = z(b,O) + t(g) + . . . 

t=O 

With  the  aid  of  equation ( 6 . 2 9 ) ,  a first  order  approximation i s  then 

- bii 
Q(b,t) % 2 t (6.40) 

xO 

Stallcoplo7  explores  the  error  in  neglecting  higher-order  terms  and  finds  it 

to  increase  with A i . .  However,  the  error  in  cross  section  is  only  about 

10 percent  for A!2 = 4 and  appears  insensitive  to  collision  energy.  We  see  in 

figure  6.3  that  the  matrix  elements  and  hence  cross  sections  decrease  rapidly 
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with Ak and  will  be  of  marginal  interest  for Ak > 4. Thus,  the  approximate 

function  given  by  equation (6.40) is  used for its  computational  simplicity. 

6.2  Representations  of  the  Results 

The  solutions  to  equation (6.4) provide  complex  probability  amplitudes, 

vibration-rotation  set.  The final 

I i)  .to  some  other  state  In) state 

en(+""), for all  states  included  in  the 

transition  probability  from  an  initial 

is  then 

= l 2  
In  more  explicit  notation, we designate  the  initial  state  by  unprimed  quantum 

numbers,  vam,  and  denote  the  probability 

(6.41) 

However,  transitions  between  individual  projection  states, m and  m',  are 

rarely  of  interest  in  the  analysis  of a kinetic  process. A more  easily  mea- 

sured  and  useful  quantity  may  be  referred  to  as  the vibration-rotation transi- 

tion  probability,  defined  as  the  final  probability  averaged  over  all  initial 

projection  states  and  summed  over  all  final  projection  states  according  to 

P(E,b) = P(E,b)  (6.42) 
v~-+v'a' 2a + m,m'  vamtv'a'm' 

Finally,  to  compare  with a collinear  model  in  which  rotational  transitions  are 
i :  . 

nonexistent,  we  define a net  vibrational transition  probability  as  the  total 

probability  of  finding  the  molecule  anywhere  in  the  manifold  of  rotational 

states  associated  with a designated  vibrational  state.  Such a probability  is 

computed  simply  as  the sum 

P(i?,b) = P(E,b) 
va-tv' a' va-w' a' 

(6.43) 
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The  net  vibrational  transition  probability so defined  still  depends  on  the 

initial  rotational  state,  however,  and  cannot  be  compared  directly  with  col- 

linear  predictions.  To  evaluate  the  collinear  approximation, we must  first 

identify  the  properties  of PVR++  that  must  be  obtained  to  produce  similar 

cross  sections  and  rate  coefficients  from  either  collision  model. 

The  relation of cross  sections  to  transition  probabilities  has  been  dis- 

cussed  in  chapter  2  and  is  known  to  be 

Eo 

u(E) =   IT f, P(E,b)b  db 
vR+v'  vR+v' 

( 6 . 4 4 )  

Equation ( 6 . 4 4 )  poses  no  difficulty  in  a  three-dimensional  model  but, as 

chapter 5 demonstrates,  its  application  to  the  collinear  model  requires  some 

additional  consideration.  Since  the  impact  parameter, b, is  not  a  collinear 

variable,  an  effective  "hard-sphere"  cross  section, uo, must  first  be  chosen 

by  some  independent  means  and  the  collinear  cross  section  is  then  defined  by 

u(B) = uoP(E) ( 6 . 4 5 )  
WV' w' 

The  validity of equation ( 6 . 4 5 )  is  contingent  on  the  idea  that uo is 

invariant  with  both  quantum  number  and  collision  energy.  One  test of the 

utility  of  a  collinear  model  is  then  to  test  this  contingency  by  defining  a 

parameter  equivalent  to uo but  obtained  from  the  three-dimensional  collision 

theory.  To  that  end,  equation ( 6 . 4 4 )  may  be  recast  into  a  form  defining  an 

"equivalent  elastic  cross  section," u:, by  the  relation 

where 

( 6 . 4 6 )  

( 6 . 4 7 )  

132 



and  xc is an  arbitrary  collision  radius.  Equation ( 6 . 4 7 )  has  been  written 

in  a  manner  that  also  correlates  with  other  concepts  used  in  the  methods  for 

selecting  a  hard-sphere  cross  section, uo. For  example,  the  constant,  xc,  may 

be  considered  a  radius  corresponding  to  the  elastic  collision  radius  used  to 

compute  gas-kinetic  collision  rates.8  The  associated  elastic  cross  section  is 

then  the  constant  term,  rxC2,  appearing  in  equation ( 6 . 4 7 ) .  When  a  Lennard- 

Jones  interaction  potential is adopted,  xc  is  often  equated  to  the  zero- 

potential  radius  and  evaluated  from  viscosity  or  viral-coefficient 

measurements, 80 

The  remaining  integral  term  in  equation ( 6 . 4 7 )  is 

( 6 . 4 8 )  

which  may  be  identified  with  a  "steric  factor"  often  used  as  a  correction  for 

three-dimensionality  with  collinear  collision  models.  The  steric  factor  must 

be  considered  invariant  in  the  collinear  model,  although  its  magnitude  here 

depends  on  the  values of E  and  the  transition  quantum  numbers.  Hence,  cases 

in  which  either uo or S are  invariant  with  both  quantum  number  and  colli- 

sion  energy  show  possibility  as  examples  where  a  collinear  collision  model  is 

applicable.  However,  the  invariance  of uo or S alone  is  not  sufficient  to 

declare  collinear  rate-coefficient  predictions  valid,  as  shown  in  the  follow- 

ing  discussion. 

- 

e 

e 

According  to  the  results  in  chapters 4 and 5 ,  a  semiclassically  deter- 

mined  cross  section  is  related to the  thermally  averaged  rate  coefficient,  in 

the  notation  of  this  chapter,  by 

E 

k(T) = 'c e 
VR" R' vRv'R' im VR" u(E) R (Z + I E ~ ~ ~ ~ ~ ~  dE ( 6 . 4 9 )  
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where , .  . . .  

If  we  now  assume  that  transitions  for  which  the  steric  factor  defined  by 

equation (6 .48 )  'is  invariant  are  those  for  which e = E (i.e.,  the 

contribution of rotational  frequencies  to  the  eigenfrequency  can  be  neglected), 

vRv' a ' W' 

then  equation (6 .49)  is  well  approximated  by 

(6 .50)  

To compare  with  the  collinear  rate  coefficient  that  presumably  represents  the 

average  of  all  initial  rotational  states,  we  introduce  a  rotational  state 

population  fraction N (T ) that  is  dependent  on  a  rotational  temperature, 

Tr.  The  net  vibrational  rate  coefficient  is  then  approximately 

vR r 

E 

k(T,Tr) % C u,' e w' irn [T Nv,(Tr)P(E,O) (Z + IcWl dZ (6.51) 
- 

vrv' VR" 1 
For  cases  where  T = Tr, it  may  be  compared  directly  with  a  collinear  rate 

coefficient.  The  additional  conditions  to  be  met  before  a  collinear  model may 

be  applied  are  then  shown  by  equation  (6.51)  to  be  that P (z, 0) must  be  rela- 
tively invariant  with quantum  number, R, and it must vary w i t h  i n  the same 

manner as the coZZinear equivaZent probabiZity. 

VR" 

. .  

6.3  Numerical  Methods  of  Solution 

Numerical  solutions  to  the  set  of  differential  equations (6 .4)  were 

accomplished  using  the  same  algorithm  that  was  applied  to  the  collinear  model 

in  chapter 4 ,  namely,  a  fifth-order  polynomial  extrapolation  technique 

developed  by  Bulirsch  and  Stoer"  and  provided  in  FORTRAN  by  Gear. 92 The 

method  is  shown  by  Hull e t  aZ. to  be  generally  advantageous  both  in 
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computer  expense  and  reliability  (error)  over  several  other  established 

methods,  particularly  the  frequently  used  Runge-Kutta  methods. A typical  col- 

lision  event  could  be  computed  in  this  application  with  as  few as 50 steps 

-while-maintaining  six-digit  accuracy.  Most  solutions  were  obtained with. 

100 steps  and  initialized  at a distance  where  the  interaction  potential  was 
. .  

,. . . . . . .  . .  . . .  , .  

of  its  value  at  closest  approach. 

An additional  consideration  required  by  the  three-dimensional  model  was 

'khe'economic  use  of  computer'storage.  The  time-independent  matrix  elements 
. .  

VVtRlmtvRm, given  by  equation  (6.26),  were  computed  prior  to  the  numerical 

integration  and  stored  in  memory.  However,  their  designation  by a sixfold , 

index  set  suggested  by  the  associated  quantum  numbers  is  impractical  even  for 

the  CDC-7600  computer  with  its  large-core  memory.  Thus,  advantage  was  taken 

of  the  zeros  and  symmetry  of  the  matrix  elements  (see  tab1 6.1 for  examples) 

and  an  index  scheme  was  developed  that  reduced  the  sixfold'matrix  to a one- 
r 

dimensional  vector  with  no  zeros  or  duplicate  elements.  Details  of  the  index 

method  and  its  implementation  in  the  computational  procedure  are  described  in 

appendix F. 
> .  

An important  conclusion,  quickly  recognized  from  early  solutions,  was 

that  the  number  of  coupled  vibration-rotation  states  required  to  achieve a 

convergent  solution  (i.e., a solution  for  which  the  further  addition  of  states 

made  no  change)  was  too  large  to  be  computed  in a defensible  time.  For 

example,  the  execution  time  per  step  on  the  CDC-7600  computer  was  approxi- 

mately N2/2 msec,  where N is  the  total  number  of  coupled  states. A con- 

vergent  solution  usually  requires  that  at  least  all  energetically  accessible 

states  must  be  included.  Thus,  if x denotes  the  uppermost  rotational  state, 

there  are'  2R+1  projection  states  for  each  orbital  state R and  hence (x+1)2 
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total  states  from R = 0 to ‘i. Computer  time  then  varies  as (I+lp. For 

collision  energies  near  vibrational  threshold, E 1 hue so that,  from  fig- 

ure 6.4, minimum  values  are R = 8 for H2 and a = 33 for  molecules  like CO. 

A corresponding  minimum  computing  time  for He collisions  is  then  approximately 

5 min - an  acceptable  value  that  has  allowed  numerous  studies  of  vibration- 

- 
- 

rotation  transition  rates  in  H2.  However,  for  molecules  like  CO  where  the 

rotational  frequency  is  much  less  than  the  vibrational  frequency,  we  could 

expect  to  require  more  than  18  hr  per  case!  Obviously,  to  study  such  mole- 

cules,  we  must  seek  ways  to  reduce  the  required  number  of  coupled  states.  The 

greatest  reduction  will  be  achieved  by  any  method  for  decoupling  the  projec- 

tion  states  within  a  given  orbital  state  and  averaging  their  effects  in 

advance of the  calculation.  Several  such  methods  are  discussed  in  the  follow- 

ing  section.  Their  implementation  has  been  a  key  factor  in  reaching  the 

objectives  presented  here. 

6 . 4  Effective  Hamiltonian  and  Other  Approximations 

During  the  course  of  this  study,  three  primary  methods  of  approximation 

were  examined.  They  are  discussed  in  this  section  in an order  of  increasing 

utility  to  this  work. 

6.4.1  Sudden  Rotation/Perturbed  Vibration  Approximation 

In  a  recent  analysis  of  vibration-rotation  coupling  in  harmonic  oscilla- 

tions, Stallc~p’~~ drew  renewed  attention to the  concept  that  rotational  and 

vibrational  motion  can  be  treated  in  separate  limiting  approximations.  For 

example,  the  rotational  period,  l/Be,  is  typically  very  long  compared  with  the 

collision  period, T~ = 2 L h .  Consequently,  the  molecule  appears  rotationally 

stationary  during  the  collision  period  and  the  induced  mixing  of  rotational 
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.ed  ac states  is  predict curately  by  the  "sudden"  or  "impact"  approximation. 5 6 ,  

The  sudden  approximation  then  provides a closed-form  integral  description  of 

the  mixed  rotational  state  of  the  molecule  at  any  time  during  the  encounter. 

In  contrast,  the  vibrational  motion  typically  undergoes  several  oscillations 

while  the  incident  particle  is  at  close  range.  Stallcop  treats  the  vibra- 

tional  motion  in  the  extreme  adiabatic  limit  for  which  many  oscillations  must 

occur  during  the  interaction  period,  but  that  limit  is  too  restrictive  for  our 

purposes.  Instead,  we  may  recall,  from  chapter 4 ,  the  broad  range  of  colli- 

sion  energies  in  which a first-order  perturbation  treatment  is  successful  and 

then  treat  the  vibrational  motion  accordingly.  Dynamically,  the  vibrational 

and  rotational  motions  are  thus  decoupled  and a complete  closed-form  integral 

description of the  vibration-rotation  transition  probability  may  be  obtained. 

Unfortunately,  all  series  solutions of the  resulting  integral  equation  were 

found  to  be  ill-conditioned  and  hence  not  calculable  with  the  significant 

digits  carried  by  available  computers.  Numerous  attempts  to  restructure  the 

formulation  or  to  evaluate  the  integral  by  numerical  quadrature  were  also 

unsuccessful  for  similar  reasons.  Thus,  while  the  approach  is  mentioned  here 

because  of  its  potential  significance  as a means  of  analyzing  vibration- 

rotation  energy  transfer,  we  were  forced  to  abandon  it  for  the  present  study. 

6 . 4 . 2  Maximum  Coupling  Approximation 

The  broad  range  of  magnitudes  covered  by  the  matrix  elements, VVIRlmlvRm, 

for  the  range  of m and m' values  suggests  that  the  number  of  coupled  states 

may  be  reduced  by  including  only  the  dominant  paths of energy  transfer. As 

figure 6 . 2  indicates,  the  coupling  between  vibration-rotation  states  will 

be  dominated  for  large R by  the  projection  states  in  which m and  m'  are 
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. ,  
> _  

. .  . 

maximum and  of  the same s ign .  The "maximum coupling"  approximation  therefore 

simply  excludes a l l  states excep t   t hose   con t r ibu t ing . ' i o  %' R' R'VRR and 

11' -R ' VR-R ' The number of   coupled   ro ta t iona l  states i n   e a c h   v i b r a t i o n a l  

set i s  then  reduced  from (1+112 t o  2 1  + 1. Ca lcu la t ions   i nco rpora t ing   t he  

foregoing   exc lus ions  are d i scussed   i n   t he   fo l lowing   s ec t ions  where  they are 

compared with  the  "effective  Hamiltonian"  approximation  described  next.  

, .  . .  

. .  , . .  . 

6 . 4 . 3  Effective  Ha,miltonian 

An approximate method for  decoupling  and  subsequently  averaging  the con- 

t r i bu t ions   o f  a l l  p r o j e c t i o n  states of   each   orb i ta l  state has   recent ly   been  

developed by Rabitz. 54 Unlike  the  preceding two approximations,  however,  even 

the   r e l a t ive   r ange   o f  parameters f o r  which t h e  method is  expected  to  be  accu- 

rate has   no t   been   def ined   in  terms o f   t h e ' m o l e c u l a r   p r o p e r t i e s   o r   c o l l i s i o n  

parameters   nor  is a method  of de f in ing  them apparent .  Hence, f o r   t h e   p r e s e n t ,  

the  approximation  must  simply  be  tested by comparison  with  l imited  exact   cases .  

In   e f f ec t ,   Rab i t z   de t e rmines   t he  form  of  the  Hamiltonian  required  to , 

e x a c t l y   n u l l i f y   t h e   c o n t r i b u t i o n   o f   i n d i v i d u a l  m and m' states i n   t h e   m a t r i x  

elements.  He begins  by  assuming  an i n t e r a c t i o n   p o t e n t i a l   w i t h   t h e   g e n e r a l  

form, i .  .. . . ?  , . , ' -  I .  . .  
. .  

m 
I .  

and f ina l ly   ob ta ins   the   e f fec t ive   mat r ix   e lement ,   ana logous   to   equa t ion ' (6 .5)  

o r   ( 6 . 2 7 ) , a s  

+ .  
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(6.53) 

where VA is an "effective  potential"  corresponding  to  equation (6.52). 

Equation (6.53) may  be converted to' te& ' corresponding'  to  the  particular 

potential,  given  by  equation (6.2), through  the  use of' equation (6.11). An 

equivalence  is  easily  identified  as 

so that 

The  resulting  "effective"  time-independent  matrix  element is then 

(6.54) 

and  the complete matrix element,  analogous  to  equation (6.27),  is 

(vlR1 IVLlvR) = U(b,t)VvIRlvR e 
(6.55) 

The  use  of  equation (6.55) in  place  of  equation (6.27) reduces  the  total nu- 

ber  of  coupled  rotational  states  in  each  vibrational  manifold  from ('i+1)2 to 'i. 
Note  by  comparison with equation (6.27)  that  the  induced phase  shift 

associated with the  exponential  argument, (m' - m)z(t), in  equation (6.27)  is 

lost  in  the  effective Hamiltonian approximation  and  the  remaining  formulation 

is'independent of n(t). We shall  see  in  the  dis,cussions  to  follow,  however, 

that  the rotational  energy  transfer is dominated by small A2 and hence  small 

- 

values of m' - m. Thus,  even  in  a  complete  solution, 'the phase  shifts 
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a s s o c i a t e d   w i t h   E ( t )  are subdued  and  the  accuracy  of  the  effective  Hamiltonian 

approximation is not   th rea tened  by t h e i r   n e g l e c t .  

6.5 Aspects  of  Convergence 

Before  applying  the  preceding  three-dimensional  model,  we f i r s t   r e q u i r e  a 

c r i t e r i o n   f o r   c h o o s i n g  a s u f f i c i e n t  set o f   ro t a t iona l   and   v ib ra t iona l   e igen -  

states to  ensure  convergence.   Experience  with  the  col l inear  model  (ch. 4 )  

has shown tha t   nea r   t h re sho ld   on ly  a few states h i g h e r   t h a n   t h e   e n e r g e t i c a l l y  

a c c e s s i b l e   v i b r a t i o n a l  states  are necessary   to   ob ta in   convergence .   Thus ,   for  

ground-state   molecules   with  E/hoe  near   or   s l ight ly   greater   than  uni ty ,   only 

t h r e e   o r   f o u r   v i b r a t i o n a l  s ta tes  are of ten  adequate .   Similar   concepts   can  be 

a p p l i e d   t o   t h e   v i b r a t i o n a l  states i n  a three-dimensional  model. However, t h e  

fundamental   vibrational  frequency of a diatomic  molecule is always  larger   than 

i t s  ro t a t iona l   f r equency  so t h a t ,   i n  a three-dimensional   model ,   col l is ions 

w i t h   s u f f i c i e n t   e n e r g y   t o   i n d u c e   v i b r a t i o n a l   t r a n s i t i o n s  (i.e.,  E/hw, I 1) 

always  couple  numerous  rotational states i n  each  vibrat ional   manifold.  The 

b e s t  manner o f   s e l e c t i n g   t h e  minimum, and y e t   s u f f i c i e n t ,  number of  coupled 

r o t a t i o n a l  states for   each   v ibra t iona l   e igenenergy  is  t h e r e f o r e   d i f f i c u l t   t o  

determine  in   advance of a c a l c u l a t i o n .  A s e e m i n g l y   l o g i c a l   f i r s t   c h o i c e  would 

be to   i nc lude   on ly   t he   ene rge t i ca l ly   access ib l e  states and  exclude a l l  o the r s .  

For E/hwe = 1, t h i s  method  of se lec t ion   envelops  many r o t a t i o n a l  states i n   t h e  

i n i t i a l   v i b r a t i o n a l   m a n i f o l d   a n d   o n l y  a few a t  t h e   n e x t   h i g h e r   v i b r a t i o n a l  

eigenenergy. We s h a l l   f i n d ,  however, t h a t   t h i s   c r i t e r i o n   f o r   s e l e c t i o n  is no t  

only  inadequate  to  ensure  convergence  but  with a semiclassical formulation i t  

a lmost   cer ta in ly   guarantees  a nonconvergent  solution! The primary  purpose  of 

t h i s   s e c t i o n  i s  t h e r e f o r e   t o  examine the  requirements   of   convergence  in  

- 

- 
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detail.  The  reader  should  be  aware  at  the  outset,  however,  that  the  results 

pertain  to  our  semiclassical  model  without  energy  conservation.  Their  rela- 

tionship  to  the  convergence  requirements  for  an  energy-conserving  collision 

model  will  only  be  inferred. 

We  test  our  ability  to  obtain  convergent  solutions  for  the  molecular  types 

of  interest  by  choosing  the  worst  numerical  case  in  an  example  (namely,  CO-He 

collisions  in  which  a  maximum  number  of  basis  states  is  required)  and  contrast- 

ing  the  results  with  those  for  H2-He  collisions,  the  opposite  extreme. 

As  figure 6.4(b) illustrates,  a  basis  set  that  is  convincingly  convergent 

for  CO-He  collisions  at  E/hwe 2 1 will  include  an  impractical  number  of 

states  that  extends  to  large R. To. deal  with  such  situations, we must  there- 

fore  first  determine  the  most  appropriate  method  of  approximation  from  sec- 

tion 6.4 that  will  reduce  the  necessary  number  of  coupled  states  and  that 

allows  solutions  for  large R to  be  obtained  in  a  practical  computing  time. 

- 

6.5.1  Evaluation  of  the  Projection-State  Decoupling  Approximations 

In  keeping  with  the  predominant  objective  of  this  chapter  to  study  the 

effects  of  rotational  transitions  on  the net  vibrational transition  rates,  we 

use  as  a  basis  for  comparison  both  the  probability,  PvR-rvl  (defined  by 

eq.  (6.43)),  and its  component,  defined  by 

PvRmtv' = c PvR" ktm' R' ,m' 
(6.56) 

Note  that  the  former  is  averaged  over  all  initial  m  states  while  the  latter 

pertains  to  a  specific  initial  m  state.  However,  both  are  summed  over  all 

final R' and  m'  states in  the  vibrational  manifold,  v',  and  are  therefore 

both  net  vibrational  transition  probabilities. 
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Since  the  approximations  described  in  section 6 . 4  are  methods  for  decou- 

pling  the  influence  of  the  projection  states  on  the  molecular  dynamics  and  sub- 

sequently  averaging  their  effects,  the  sensitivity  of  complete  solutions  to  the 

quantum  number  of  the  initial  projection  state  is  an  important  aspect  in  under- 

standing  of  the  relationship of the  complete  and  approximate  calculations. 

Figure 6.7 shows  that,  for  CO-He  collisions, PvRmv, is  relatively  insensitive 

to  the  initial  value  of  m,  even  for  large  impact  parameters  where  the  phase 
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HAMILTONIAN 

0- 
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m 

(a) A = 6 MeV 
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0- 
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(b) A = 1000 eV 

Figure 6.7.- Distribution  of  net  vibrational  transition  probabilities  over  the 
range  of  initial  projection  states  for  CO(vR = 0,3)-He  collisions  at 
several  impact  parameters.  Only  probabilities  for v' = 1 are  shown. 
Fixed  collision  parameters  are  E/hwe = 1.08, L = 0.02 nm.  The  basis  set 
contained R = 0-8 rotational  states  in  each  vibrational  manifold  and 
included  all  corresponding  projection  states.  Symbols  denote  results 
from: . a  complete  solution, 0 0 0 the  maximum  coupling  approxima- 
tion.  Effective  Hamiltonian  results  appear  as  a  single  value. 

- 

shift  associated  with c(b, t) is  greatest.  This  result  occurs  because  no 

other  dynamical  phase  interference  exists  between m states of the  same 

eigenfrequency w while S2(b,t)  is  generally  small  in  the  primary  region 

of  interaction (5 = 0 at t = 0 where  the  interaction  is  greatest).  In  view  of 

- 
VR , 

the  foregoing  insensitivity to initial m y  vibrational  transition  probabilities 

calculated  with  an  effective  Hamiltonian  approximate  the  complete  solutions 

more  accurately  than  the  maximum  coupling  approximation.  Its  similar  accuracy 

in  reproducing  related  net  vibrational  cross  sections  is  indicated  by 
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figure 6.8, where  the  variations  of  with  impact  parameter,  calculated 

by  the  two  approximations,  are  compared  with  complete  solutions.  Clearly,  the 

effective  Hamiltonian  approximation is superior,  particularly  for  the  smaller 

interaction  scale  factor, A, shown  in  figure 6.8(b).  (The smaller  scale  fac- 

tor is believed  to  be  more  realistic.*')  Similar  accuracy is obtained  for 

H2-He  collisions  as  shown  in  figure 6 . 9 .  One  should  note,  however,  that  the 

impressive  accuracy  of  the  effective  Hamiltonian  is  aided  significantly  by  our 

use  of  the  net  probability,  PvR-rv,,  as a basis  for  comparison.  Similar  com- 

parisons  for  detailed  vibration-rotation  transitions  would  not  appear  as 

favorable. Others54,111-113 have  obtained  equivalent  results  for a variety  of 

molecular  types. 

pVR-rv' 

0 5 IO 15 
b/L 

0 5 IO 15 
b/L 

(a) A = 6 MeV (b) A = 1000 eV 

Figure 6.8.- Variation  of  net  vibrational  transition  probability  with  impact 
parameter  for  CO(vR = 0,3)-He  collisions  using  several  approximate  solu- 
tions.  Only v' = 1 probabilities  are  shown.  The  basis  set  included 
R = 0-8 in  each  vibrational  manifold  for  all  cases;  E/hwe = 1.08, 
L = 0.02 nm.  Symbols  denote  results  from a complete  solution, 0 the 
maximum  coupling  approximation,  and a the  effective  Hamiltonian 
approximation. 

- 
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Figure 6.9.- Variation  of  net  vibrational  transition  probability  for 
Hp (vR = 0,2)-He  collisions; v' = 1, E/hwe = 1.1 , A = 303 eV,  and 
L = 0.0273 nm.  The  basis  set  included R = 0-10 in  both  vibrational 
manifolds.  Symbols  denote  the  results  from: ., a  complete  solution, 
and A ,  the  effective  Hamiltonian  approximation. 

6.5.2  Convergence  Requirements  for  Vibration-Rotation  Energy  Transfer 

The  individual  vibration-rotation  transition  probabilities  from  a  com- 

plete  solution  are  shown in figure 6.10 for  CO-He  collisions  at  an  initial 

kinetic  energy  just  above  the  vibrational  threshold.  Rotational  states  from 

R = 0 to 10 were  included  equally  in  vibrational  manifolds,  v = 0 and 1. The 

accompanying 484 differential  equations  and  14,883  dissimilar  matrix  elements 

exceed  a  practical  upper  limit  for  repetitive  computation.  And  yet,  compari- 

son  to  a  similar  calculation  with R = 0 to 8 rotational  states  in  each  vibra- 

tional  manifold  shows  that  convergence  in  the  vibration-rotation  probabilities 

pvR+v' R ' is  far  from  realized.  However,  this  result  is  not  surprising 

because,  while  all  open  channels  (energetically  accessible  states)  have  been 

included  in v' = 1, most  open  channels  in v' = 0 are  missing  (see 

fig.  6.4(b)  for  reference).  The  interesting  result  is  shown in  figure 6.11 
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} z = 0-10 

} Z = O - 8  

Figure 6.10.- Effect of additional  rotational  states  on  the  vibration-rotation 
transition  probabilities  in CO(vRm = O,O,O)-He  collisions.  Both  cases 
were  obtained  from  a  complete  solution  including  all  projection  states  in 
the  basis  set  and  vibrational  states  v = 0 ,  1. An  equal  number  of  rota- 
tional  states  were  included  in  each  vibrational  manifold.  Collision 
parameters  are E/hw, = 1.08, b = 0 .  The  interaction  potential is 
defined  by A = 6 MeV, L = 0.02 nm. 
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Figure 6.11.- Convergence  of  the  net  vibrational  transition  probability for CO-He  collisions  (i.e.,  the 
probability  has  been  summed  over  all II', m'  according  to eq. ( 6 . 4 3 ) ,  but fo r  a  single 
initial m state). A duplicate  set of rotational  states  was  included in each  vibrational  mani- 
fold.  Only  probabilities  for v' = 1 are shown. Collision  parameters  are  the  same  as  in 
figure 6 . 8 .  Symbols  denote  results  from: 0 ,  a  complete  solution, 0, the  maximum  coupling  approxi- 
mation, A ,  the  effective  Hamiltonian  approximation. 



where  we  imply  from  the  behavior  of 

before  all  open  channels  in  any  vibrational  manifold  are  reached,  a  convergence 
PVR" 

for  one  value  of  m  that,  even 

in  the net  vibrationa2  transition  probability, PvR+vl, is  obtained!  Similar 

behavior  is  found  for  H,-He  collisions,  as  figure  6.12  indicates.  Note  that, 

in  this  latter  cas.e,  calculations  including  all  open  channels  in  both  vibra- 

tional  manifolds  were  possible  and  the  convergence  asymptote  is  convincingly 

unique.  Figures 6.11 and  6.12  also  include  results  from  the  approximate 

methods  of  solution  and  show  them  to  approach  similar  asymptotes. 

A A A A A  A 
Pvlm-v' - 

CLOSED 
CHANNELS - 
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- CHANNELS 
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VIBRATIONAL MANIFOLD 

Figure  6.12.-  Convergence of the  net  vibrational  transition  probability  for 
H2(vRm = 0,4,4)-He  collisions.  Stipulations  and  symbols  are  the  same 
as  in  figure  6.9.  Collisions  parameters  are  E/hwe = 1.5, b = 0, 
A = 303  eV, L = 0.0273 nm. Note that,  in  this  example,  cases  are  shown 
where aZZ open  channels  are  included  in  both  vibrational  manifolds. 

- 

The  uniqueness  of  the  asymptotes  obtained  in  CO-He  solutions  is  not  yet 

confirmed,  however.  In  fact,  subsequent  calculations  using  the  effective 
.. . 

Hamiltonian  for  large  but unequal numbers of rotational  states  in  each  vibra- 

tional  manifold  are  shown  in  figure  6.13  to  produce  drastically  different 

results.  Note  that,  even  though  cases  including R = 0 to 40 in  v = 0 but 

only R = 0 to 10 in v = 2  contain  all  open  channels  in  both  v = 0 and 1, 

the  transition  probability  is  two  orders of magnitude  from  a  final  convergence. 

14 7 



EQUAL '1 STATES IN BOTH 
VIBRATIONAL  MANIFOLDS 

\ --A" 2 ~ 0 - 4 0  IN V=O MANIFOLD 
\ 
\ (INCLUDES  ALL  OPEN 
\ CHANNELS  IN V =  0) 
\ 
4 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
b. 4 
" 0 

ALL OPEN ALL OPEN t CHANNELS  IN t CHANNELS  IN VI= I INCLUDED V 0 INCLUDED 
10-5  I I 

I I  I I I 

0 IO 20 30 34 40 50 60 
MAXIMUM '1' STATE  IN V I =  I MANIFOLD 

Figure  6.13.-  Convergence of the  net  vibrational  transition  probability  in 
effective  Hamiltonian  solutions  for CO(vR = 0,3)-He  collisions  v' = 1, 
E/hwe = 1.08, A = 1000 eV, L = 0.02 nm.  Cases  are  represented  that 
include  large  but unequal numbers  of  rotational  states  in  each  vibra- 
tional  manifold.  Note  that  cases  are  also  shown  where  all  open  channels 
are  included  in  both  vibrational  manifolds. 

- 

A s  more  rotational  states  are  added  to  v = 1, a  final  definite  convergence  is 

eventually  reached  where  further  additions of any  kind  have  no  effect.  Con- 

versely,  figure  6.13  also  demonstrates  that  cases  including  a  duplicate  set of 

rotational  states  in  each  vibrational  manifold  obtain  a  solution  near  the 

final  convergent  value  with  relatively  few  rotational  states.  Recall,  however, 

that  the  convergence  criterion  thus  implied  pertains  only  to  the  net  vibra- 

tional  transition  probability, 

rotation  probabilities 

pvR+v' ' and  not  the  individual  vibration- 

pvR+v' R ' * 
While  there  is  no  attempt  made  here  to  construct  a  mathematically 

definitive  argument  showing  why  a  duplicate  but  nonconvergent  set of rota- 

tional  states  in  each  vibration  manifold  produces  nearly  convergent  vibra- 

tional  transition  probabilities,  the  following  conceptual  explanation is 
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o f f e r e d .   F i r s t ,  recall that  each  time-independent  matrix  element, VV,II ,m,vRm, 

is a measure  of  the  coupling  strength  between two v ib ra t ion - ro t a t ion  states. 

The matr ix   e lements  are shown i n   f i g u r e  6 . 3  to   general ly   emphasize  coupl ing 

only between states w i t h  small d i f f e r e n c e s   i n   a n g u l a r  momentum, r ega rd le s s   o f  

the   angular  momentum o f   e i t h e r  state. This  emphasis is p r imar i ly  a consequence 

o f   t he   i n t eg ra t ed   ove r l ap   be tween   ro t a t iona l   e igen func t ions  of the  undis turbed 

molecule  and i t  i s  q u a l i t a t i v e l y   u n a f f e c t e d  by  any v ibra t iona l   change  of 

state. A s  a resu l t ,   v ibra t iona l   t rans i t ions   a l so   occur   p redominant ly   be tween 

states wi th  small d i f f e r e n c e s  i n  angular  momentum. We s h a l l   r e f e r   t o   s u c h  

p a i r s   o f  states as "companion states" t o  imp ly   t ha t   t he i r   angu la r  momentum is 

similar ( A t  is small)   but   each i s  a member of a d i f f e r e n t   v i b r a t i o n a l  mani- 

fold.  Thus, i f  a r o t a t i o n a l  s ta te  has no companion i n   t h e   b a s i s  set of  an 

a d j a c e n t   v i b r a t i o n a l   m a n i f o l d ,   d i r e c t   v i b r a t i o n a l   t r a n s i t i o n s  from t h a t   r o t a -  

t i o n a l  s ta te  w i l l  be  improbable. 

With the   fo rego ing   gene ra l   p rope r ty   o f   v ib ra t ion - ro t a t ion   t r ans i t i ons   i n  

mind, w e  can now d e s c r i b e  i t s  e f f e c t  on the   energy   t ransfer   p rocess   wi th in  t h e  

average  molecule  during a c o l l i s i o n .  To do s o ,  we s h a l l   a d o p t  a po in t  of view 

compatible  with  our  time-dependent semiclassical model  and r e f e r   t o   t h e  t i m e -  

var ian t   ampl i tude  modulus ( t )  I as the  instantaneous  ' 'occupation" of 

s ta te  IvRm). By ''average  molecule'' we  then mean tha t   t he   p rog res s ion  of s ta te  

occupa t ions   i n  time provides a t r a c e  of the  average  path  of  energy f l u x  wi th in  

many iden t i ca l   mo lecu le s ,  a l l  e x p e r i e n c i n g   i d e n t i c a l   c o l l i s i o n s .  

1 C v R m  

Since w e  cons ide r   co l l i s ion   ene rg ie s   ma in ly   above   t he   v ib ra t iona l   t h re sh -  

o ld ,  many r o t a t i o n a l  states are t y p i c a l l y   a c c e s s i b l e .   E a r l y   i n   t h e   c o l l i s i o n ,  

t h e   e n e r g e t i c a l l y   a c c e s s i b l e   r o t a t i o n a l  s t a t e s  i n   t h e   v i b r a t i o n a l   m a n i f o l d  

c o n t a i n i n g   t h e   i n i t i a l  s ta te  become occupied, a l l  w i th  similar p r o b a b i l i t i e s .  
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Near  closest  approach,  :vibrational  transitions  then  begin  between  companion 

states  and  a  corresponding  occupation  distribution  develops  in  the  adjacent 

vibrational  manifolds.  However,  if  the  manifold  receiving'energy  has  been 

given  fewer.rotationa1  states  in  its  basis  set,  (as  it  might  because  a  higher 

manifold  would  have  fewer  open  channels),  then  not  all  rotational  states. in 

the  initial-state  manifold  have  companions.  For  the  energy  in  those  rotational 

states  to  become  available  for  a  vibrational  transition,  it  must  first  return 

to  a  rotational  state  in  the  same  manifold  where  a  companion  exists.  Obviously, 

such  occurrences  are  the  artificial  consequence of an  incomplete  basis  set  and 

they  stress  the  importance  of  including  at  least  a  duplicate  rotational  set  in 

each  vibrational  manifold,(if  not  a  convergent  set)  to  properly  reproduce  the 

transient  dynamics  during  a  collision. 

We  may  now  ask  why  a  duplicate  but  incomplete  rotational  basis  set  in 

each  vibrational  manifold  approximates  the  convergent  solution.  Recall  that 

it  does so only  for  the  total  occupation  of  each  vibrational  manifold,  that  is, 

the  occupation  summed  over  all  rotational  states.  If  all  rotational  states 

have  companions  as  they  do  in  duplicate  sets,  the  most  probable  paths  are 

available  for  vibrational  energy  transfer  from  each  rotational  state  consid- 

ered  and  hence  no  artificial  impediment  to  the  energy  flow  is  introduced  any- 

where.  However,  obtaining  the  correct  net  rate  of  vibrational  energy  transfer 

remains  to  be  questioned.  The  net  rate  of  energy  transfer  to  all  states  of  a 

vibrational  manifold  may be written  as  a  sum  proportional  to  the  occupation 

distribution  among  its  rotational  states. At collision  energies  exceeding 

the  vibrational  threshold,  the  rotational  states  are  strongly  coupled 

and  the  depletion of any  rotational  state  by  a  vibrational  transition 

is rapidly  restored,  thus  maintaining  the  distribution  of  rotational  state 
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occupations  in  a  time  scale  short  compared to.the encounter  period.  When 

too  few  rotational-  states  are.included  in  the  basis set!, the  occupation 

distribution  is  unnaturally  constrained  and  vibrational  transitions  from' . 

each  rotational  state  occur,  at  an  increased- rate-but 'from  a  fewer  .number  of 

states..,  'Since.  all  rotational  states  are  closely  coupled,  no  particular 

preference  is  given  to  vibrational  transitions  from  any  of  them  and  the-'net 

vibrational.  transition  rate  is  only  weakly  affected, as  we  have  observed. 

Note,  however,  that  the  occupation  distribution  -of  rotational  stat& is 

strongly  affected by,the completeness of.the'basis set so that  convergence 

in.the individual  vibration-rotation  transition  rates  cannot  be  e'xpected  from 

an.incomplete  basis  set,  as  we  have  also  observed. 

Thus,  we  have  rationalized,  in  the  foregoing  explanation,  the  reasons  for 

expecting  duplicate  but  nonconvergent  sets of rotational  states  in  each  vibra- 

tional  manifold  to  closely  reproduce  the  net  vibrational  dynamics  of  the  mole- 

cule  given  by  a  convergent  set.  We  shall  incorporate  this  convergence  criter- 

ion  along  with  use  of  the  effective  Hamiltonian  approximation  in a11 the  cal- 

culations of 

rotation  transition  probabilities  are  studied,  a  duplicate  and  completely  con- 
pvL+vl to  follow.  Conversely,  when  individual  vibration- 

vergent  basis  set  will  always  be  used. 

Model 

An example  of  the  final  rotational  state  occupations  from  a  convergent 

basis  set  is  shown  in  figure 6.14. The  distributions  in  each  vibrational 

manifold  are  plotted  on  vertically  shifted  scales  to  demonstrate  their  relative 

similarity.  However,  if  we  take:the  total  energy  of  the  system  to  be  the 
. .  

initial  sum  of  internal  energy  and  relative  kinetic  energy,  then  many  of  the 
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Figure 6.14.- Vibration-rotation  transition  probability  distributions  for 
CO(vll = 0,3)-He  collisions  from  an  effective  Hamiltonian  solution; 
E/hwe = 1.08, b = 0, L = 0.02 nm, A = 1000 eV. 
- 

rotational  states  in  the v' = 1 manifold  that  remain  occupied  aftCr  the  col- 

lision  are  energetically  inaccessible!  (They  are  closed  channels.&  Since  a 

more  exact  collision  model,  where  total  energy  is  conserved,  would  leave  the 

closed  channels  in  all  vibrational  manifolds  completely  empty,  the  failure  of 

our  semiclassical  model to comply  with  such  considerations  is,  of  course,  a 

consequence  of  the  lack of energy  conservation  when  computing  the  classical 

trajectory,  just  as it was  in  the  collinear  model  discussed  in  chapter 4. We 

showed  in  chapter 4 that,  when  the loss of  energy  conservation  had  no  large 

effects  on  the  molecular  dynamics,  it  could  be  adequately  compensated  for  by 

use  of  the  average  total  energy  given  in  equation (4.14) as 

ET = E + h(wn + wk)/2 
- 

(4.14) 
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However, the  use  of   equat ion  (4 .14)   to   compute  total   energy makes i t  dependent 

on   the   t rans i t ion   be ing   cons idered   and ,  as a resul t ,   the   concept   of   open  and 

closed  channels becomes  ambiguous. While th is   ambigui ty   poses   no   p rac t ica l  

d i f f i c u l t y ,  a c a r e f u l   i n t e r p r e t a t i o n   o f   t h e  semiclassical r e s u l t s  must  be made 

when comparing  them t o  energy-conserving  predictions - namely, t h e   p r o b a b i l i t y  

d i s t r i b u t i o n s   o b t a i n e d   f o r  a s ing le   va lue   o f  E do not   cor respond  to  a s i n g l e  

total  ene rgy   o r   s ing le   i n i t i a l   k ine t i c   ene rgy   and ,   consequen t ly ,   t hey   canno t  

be compared d i r e c t l y   w i t h  a dis t r ibut ion  obtained  f rom  an  energy-conserving 

c o l l i s i o n  model.  But, a f t e r   t r a n s f o r m i n g   t h e   d i s t r i b u t i o n   o f   e i t h e r   c o l l i s i o n  

model i n t o   t h e  framework of the   o ther ,   us ing   equat ion   (4 .14) ,   the   resu l t s  

should  be  comparable  just  as they were in   chap te r   4 .  The accuracy  of  the 

three-dimensional semiclassical model i n  such  comparisons  remains  to  be  proven 

and no comparisons are made i n   t h i s   s t u d y .  However,  from t h e   r e s u l t s   i n  

chapter   4 ,   there  i s  good reason  to   expect   that   the   three-dimensional   semiclas-  

sical model ,   constrained  to   homonuclear   molecules   with  l ight   col l is ion  par tners  

and proper ly   in te rpre ted ,   should   g ive   reasonably   accura te   p red ic t ions .  

Final1:r. w e  must consider   the  consequences  of   the  ambiguous  closed- 

channel  concept  on  our  previous  convergence  arguments.  While  the i n i t i a l   d i s -  

cuss ions   o f   convergence   in   f igures   6 .11   to   6 .13  were keyed to   the   concept   o f  

open  and  closed  channels,  they serve mainly as a g u i d e   t o   i d e n t i f y   t h e  number 

of channels  for  which  convergence may be  expected.   In   that   regard,   the   concept  

is as u s e f u l  as i t  would  be i n  an  energy-conserving  model. Recall, however, 

that   the   pr imary  aspect   of   our   convergence  cr i ter ion w a s  t o   p rov ide  companion 

states i n  a l l  v ibra t iona l   mani fo lds   to   p roper ly   handle   the  transient dynamics 

d u r i n g   t h e   c o l l i s i o n .   T h a t   p r i n c i p l e   a p p l i e s   t o  a l l  co l l i s ion   models ,  
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regardless of their  energy-conserving  features or the  final  rotational-state .-, 

occupations.obtained. , .  . . . . .  . .  < .  

. .  
, I ,  . , : .. , 

6.7 Three-Dimensional  Inelastic  Collisions  and  Their  Relation  to  Collinear 
. .  

_ .  - .  
. ,  : - , ;  

Encounters 
, ,- -; :! .; . : 

The  preceding  three-dimensional  collision  model  is  applied  here  to  evalu- 
. .  

. . I  

ate  the  validity  of  collinear  models  for  a  variety  of  molecular  types  and 
. .  

initial  conditions.  However,  examples  are  constrained  to  collision  partners 

that  can  be  treated  accurately  by  the  semiclassical  approximation  in  the 

absence of dynamic  coupling  between  the  quantized  molecule  and  the  classical 

trajectory.  Guided  by  the  results  in  chapter 4 in  that  regard,  we  consider 

only  helium  atom  collisions  with H,, N,, and CO. The  hydrogen  molecule  is  an 

example  in  which  the  rotational  eigenenergies  are  broadly  spaced  in  comparison 

with  the  vibrational  energies  and  the  effects  of  vibration-rotation  coupling 

are  expected  to  be  significant.  H,  also  requires  the  smallest  convergent 

basis  set  since  its  homonuclear  nature  only  couples  rotational  states of the 

same  parity  (i.e., A L  is  always  even). N2 also  requires  only  states  of  the 

same  parity,  but  its  close  rotational  energy  spacing  places  it  in  a  different 

molecular  class  where  numerous  rotational  states  of  high  angular  momentum  must 

be  included.  Finally, CO is  similar  in  rotational  structure  to N,, but  its 

heteronuclear  nature  couples  all  rotational  states of either  parity.  Most 

common inert-atom/diatomic-molecule collisions  are  represented  by  one of  th&S&..” 

three  examples.  Excluded  cases  are  those  in  which  reactive  atom-exchange 

states  participate  in  the  energy-transfer  process  (as  in  H2-F  collisions)  and 

those  in  which  electronic  states  participate  (as  in NO). 

, I .:, 

The  range  of  initial  rotational  states  of  interest  in  a  practical  appli- 

cation  is  first  indicated  by  considering  their  equilibrium  population 
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distributions.  Figure  6.15  illustrates some typical  distributions  for  several 

vaiues of the  parameter, T/8,, where 8, is a characteristic  rotational  tem- 

perature  with  representative  values  of 2.8 K for CO and 44 K for Hp 

(er = hBe/sk,  where s is a symmetry  factor).  The  results  in  figure  6.15 

suggest  that  initial  rotational  states  in  the  range 11 = 0 to 20 are  repre- 

sentative of most  applications.  We  shall  see  that  the  collision  dynamics  for 

larger  initial  values  of 11 are  easily  inferred  from  the  predictions  for 

E 5 20. 

0 IO 20 30 40 50 
ORBITAL  QUANTUM  NUMBER, 2 

. .  

Figure  6.15.-  Maxwellian  rotational  state  populations.  Numbers  at  the  distri- 
bution  peaks  indicate  the  corresponding  angular  momentum  quantum  numbers. 

Finally, we do  not  attempt  to  compare  collinear  and  three  dimensional 

predictions  directly  by  obtaining  rate  coefficients  from  each  model  since  to 

do so with  the  three-dimensional  model  would  be  too  costly.  Instead,  we  shall 
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compare  the  individual  elements  contained  in  the  rate  coefficient  definition 

and  their  variations  with  the  collision  parameters,  as  discussed  in  sec- 

tion 6.2. 

6.7.1  H2-He  Collisions 

Although  vibration-rotation  energy  transfer  for  Hz-atom  collisions has 

been  studied  extensively  in  the  recent literature,40~54,111,114-118 we include 

it here  as  a  contrasting  example  to  the  behavior  of  the  heavier  molecules  that 

follow.  The  interaction  potential  constants, A and L,  for  all  H2-He  calcula- 

tions  were  chosen to resemble  the  calculated  potential  of  Gordon  and  Secrest .84 

An  indication  of  the  coupling  strength  between  vibration-rotation  states 

in H2 is  given  by  the  matrix  elements  shown  in  figure 6.3(a). A s  mentioned 

previously,  the  results  show  that  transitions  with A R  s 4 provide  the  primary 

path  for  vibrational  energy  transfer.  The  relative  levels of H2 rotational 

eigenenergies  in  each  vibrational  manifold  shown  in  figure 6.4(a)  then  suggest 

that  transitions  from  v = 0 to 1 (for  example)  will  occur  with  increasing 

resonance  enhancement  from  values  of R -> 10 in  v = 0, and  that  the  state 

vR = 0,16  is  in  near  resonance  with  v'R' = 1,14  leaving  very  little  excess 

energy to be  traded  with  translation.  Such  transitions  may  be  considered  as 

the  primary  contributors  to  an  apparent  net V-R mechanism  for  energy  transfer. 

The  calculated  transition  probabilities  shown  in  figures 6.16 to 6.18 

confirm  all  the  foregoing  expectations.  Figure  6.16(a)  shows  that,  when  the 

initial  state  is vR = 0,16,  transitions  occur  to v' = 1 predominantly  for 

A R  = 2  downward  with  large  probability  and  that  the  occupation  of  rotational 

states  within  each  vibrational  manifold  is  dispersed,  but  with  less  probabil- 

ity,  by A R  = 2 transitions  in  either  direction. A sequence  of L I E  = 2  down- 

ward  transitions  then  populates v' = 2, etc.,  at  lower R. Conversely,  when 
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the  initial  state  has  small  angular  momentum,  as  shown in figure 6.16(b), 

vibrational  states  are  connected  either  by  single  large A$ transitions  or  by 

successive  rotational  transitions  within  v = 0 that  precede  any  vibrational 

change.  .The  vibrational  transition  probability  is  correspondingly  lower. 

This  later  example  then  appears  more  as  a  V-T  mechanism  for  energy  transfer 

because  of  the  relatively  large  amount  of  translational  energy  required  to 

induce  a  vibrational  transition.  Intermediate  results  for  other  initial  rota- 

tional  states  are  summarized  in  figure  6.17,  where  the  net  vibrztional  transi- 

tion  probabilities  are  shown  for  all  initial R below  the  continuum.  (Note 

that  the  molecular  dynamics  for  initial  states  near  the  continuum  are  not 

accurately  treated  because  of  the  neglected  continuum  interaction,  but  fig- 

ure  6.17  is  believed  to  demonstrate  a  realistic  qualitative  behavior.) 

_ .  , . _ .  . 

We  can  see  from  figure  6.17  that  the  vibrational  transition  probability 

is  strongly  dependent  on  the  initial  rotational  state  and  hence  a  collinear 

model cannot be  expected to realistically  predict  vibrational  transition  rates 

for Hz. The  inapplicability of a  collinear  model  to H2 is  further  confirmed 

by  figure 6.18. For  example,  curve  (a)  in  figure 6.18 represents  the  usual 

collinear  prediction  in  which  the  rotational  contributions  to  eigenfrequencies 

are  entirely  excluded.  The  comparative  three-dimensional  predictions  show 

that  the  probability  and  threshold  energy  depend  strongly  on  the  initial L 

and  both  can  be  significantly  different  from  the  collinear  results.  Further- 

more,  simple  corrections  to  the  collinear  model,  such  as  the  use of vibrational 

frequencies  shifted  to  match  the  predominant  vibration-rotation  states,  are 

not  satisfactory  as  curves (b) and  (c)  in  figure  6.18  indicate. 

The  preceding  comparisons  were  all  done  for  a  zero  impact  parameter,  but 

we  have  shown  with  equation  (6.47)  that,  although  collisions  at b = 0 make 
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Figure  6.17.-  Effect of initial  rotational  state 
on  the  net  vibrational  transition  probabili- 
ties  for  para-H2(v = 0)-He  collisions, 
v' = 1. Collision  parameters  are  the  same 
as  for  figure 6.16. 

Figure  6.18.- A comparison  of  net  vibrational 
transition  probabilities  for  para-Hip(v=O)-He 
collisions  from  .the  three-dimensional  and 
collinear  models;  v' = 1. Three-dimensional 
model  includes  all  states  indicated  for 
figure 6.16. 



I 

no  contribution  to  the  cross  section  or  rate  coefficient,  the  probabilities  at 

b = 0 can  be  used as a  normalizing  factor.  Cross  sections  are  then  propor- 

tional  to  P(E,O)  and  the  integral  of  (b/L)  P(E,b)/P(E,O)  over  all  b/L.  While 

adequate  discouragement  for  the  use of a  collinear  theory  to  model  H2  colli- 

sions  has  already  been  presented,  we  display  the  cross-section  integrands  for 

later  comparisons  with  heavier  molecule  results.  Figure 6.19 shows  the  H2 

cross-section  integrand  to  depend  strongly  on  initial Q. Figure  6.20  shows 

it  also  to  depend  on  collision  energy  but  with  significance  only  for  initial 

rotational  states  where  vibrational  energy  is  transferred  predominantly  through 

V-R transitions  (i.e.,  as  in  fig.  6.20(b)  for vQ = 0,16). 

vR+v' VR" vR-tv' 

Figure  6.19.-  Effect of initial  rotational  state  on  the  net  vibrational  cross- 
- section  integrand  for  para-H2(v = 0)-He collisions, v' = 1, at 
E/hw, = 1.5.  Note  that  the  integral  of  this  parameter  over  all  b/L  is 
proportional  to  the  inelastic  cross  section  according  to  equations (6.46) 
and  (6.47). 
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Figure  6.20.-  Parameters  affecting  the  net  vibrational  cross-section  integrand 
for  para-H2(v = 0)-He  collisions,  v' = 1. 

From  the  preceding  comparisons,  there  is no difficulty  in  concluding  that 

the  analysis  of  vibrational  energy  transfer in H 2 ,  or  any  molecule  where  near- 

resonant  vibration-rotation  transitions  with  small A R  can  occur,  requires  a 

complete  three-dimensional  treatment  including  both  vibrational  and  rotational 

motions.  Furthermore,  even  though  some  initial  states  with  small  angular 

momentum  are  treated  by  the  collinear  mode1,with  some  resemblance  to  the  three- 

dimensional  results,  extended  use  of  the  collinear  model  to  deduce  a  thermal- 

rate  coefficient  enveloping  a  thermal  distribution of initial  rotation  states 

is  entirely  inappropriate. 

6.7.2  N2-He  Collisions 

The  calculated  collision  dynamics  of N2 with  He  serve  here  as  the  primary 

example  to  illustrate  the  nature of vibration-rotation  energy  transfer  in 

diatomic  molecules  with  closely  spaced  rotational  eigenenergies. The N 2  
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molecule  provides  a  considerable  computational  convenience  because,  as  with 

all  homonuclear  molecules,  only  alternate  rotational  states  are  coupled, 

thereby  requiring  half  the  basis  set  demanded  by  an  otherwise  similar  hetero- 

nuclear  molecule.  Thus,  in  this  section,  we  study  N2-He  collisions  in  detail 

and  later  compare  the  results  with  more  limited  calculations  for  the  hetero- 

nuclear CO molecule. 

Unlike  the  H2-He  collisions,  the  interaction  potentials  for  atom  colli- 

sions  with  many-electron  molecules  like N2 are  relatively  unknown.  The  poten- 

tial  parameters, A and L in  equation  (6.1),  are  therefore  subject  to  large 

uncertainties  and we must  ensure  that  any  conclusions  made  concerning  the 

nature  of  energy-transfer  processes  are  unaffected  by  the  interaction  uncer- 

tainties. An indication  of  the  range  of  uncertainty  is  obtained  by  noting  the 

range  of  interaction  parameters  implied  in  previous  comparisons  of  experimen- 

tally  determined  vibrational  rate  coefficients  with  their  related  collinear 

t h e o r i e ~ . ~ ~ , ~ ~ , ~ ~  For  example,  the  interaction  range, L, is  typically  found 

to  be  between  0.02  and 0.03 nm  with L = 0.02 nm favored  for  molecules  like 

N2.  The  analysis  of  molecular  beam  experiments, 87 which  yields  vibrationally 

inelastic  cross  sections  directly,  suggest  similar  values  for L but  also 

produces  values  of  the  interaction  magnitude A. For  molecules  like N2, 

values  are  typically  near A = 1000 eV.  However,  an  alternate  means  of 

obtaining A is  to  compare  the  exponentially  repulsive  potential  model 

(eq.  (6.1)) with  the  repulsive  part  of  Lennard-Jones  potentials  (eq.  (3.22)) 

implied  by  early  viscosity  measurements. 6 ,  8 o  Magnitudes  as  large  as A = 6 MeV 

are  thus  obtained.  While  this  later  value  is  not  taken  seriously  nor  is  our 

potential  model  realistic  enough  to  warrant  much  detailed  interpretation,  both 

. .  . 
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values  are  used  here  as  limits  to  demonstrate  the  effects of A on  the  calcu- 

lated  cross  sections. 

The  mechanism  of  vibrational  energy  transfer  in  N2 is significantly  dif- 

ferent  from  that  previously  shown  for He. The  reasons  may  be  generally  under- 

stood  from  an  examination  of  the  eigenenergies  and  interaction  matrix  elements 

of N2 (illustrated  in  figs.  6.21  and  6.22,  respectively). A well-known  fea- 

ture  of  most  induced  transitions is that  their  probability  is  enhanced  by 

their  degree  of  resonance.  For  example,  figure  6.17  illustrates  the  case  for 

H2 in  which  the  most  resonant  transition  from !L = 16 is also  the  most  prob- 

able,  causing  the  principal  path  for  energy  transfer  to  be  through V-R transi- 
, . . , ... r. i , ,- - P .- . 

tions.  For N,, however,  the  vibration-rotation  eigenenergies  shown  in 
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Figure  6.21.-  Vibration-rotation  eigenenergies  for  N2. 

(Note:  Not  all  rotational  states  are  shown.) 
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Figure  6.22.-  Time-independent  matrix  elements  for  para-N,; v, v' = 0, 1. 
Open  symbols  are  for L = 0.02  nm,  solid  symbols  are  for L = 0.03  nm. 
A similar  plot  for  ortho-N2  would  have  no  distinguishable  differences. 

figure  6.21  allow  near-resonant  transitions  only  for  large A t ,  while  the 

matrix  elements  for  N2(fig.  6.22)  suppress  large A R  transitions,  just  as 

they  do  in H2 and  CO  (fig.  6.3).  Thus,  molecules  with  a  vibration-rotation 

spectrum  like N,, characterized  by  a  large  value  for  ue/Be,  are  always  con- 

strained  to  nonresonant  V-T  transitions  with  a  transition  energy  approximately 

equal  to  hue.  Consequently,  the  rotational  energy  transferred  by  small A R  

transitions  is  always  a  small  contribution  to  the  total,  thus  rendering  the  net 

. .. 

vibrational  transition  rates  insensitive  to  the  initial  angular  momentum. 

Figure  6.23  demonstrates  that  insensitivity  for  both  para-  and  ortho-N,. 

The  emphasis  of  nonresonant  V-T  transitions  and  the  accompanying  rinsen- 

sitivity  of  vibrational  transition  rates  to  the  initial-state  angular  momentum 
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Figure  6.23.-  Effect  of  initial  rotational  state  on  the  net  vibrational  trap- 
sition  probabilities  for  para-N2(V = 0)-He collisions, v’ = 1. Co1;ision 
parameters  are  b = 0, L = 0.02  nm,  E/hwe = 1.1. I ,  

! ’  
I 

are  the  key  factors  contributing  to  a  surprising  accuracy  of  the  collinear 

collision  model  for  predicting  transition  probabilities  in N2. Vibrational 

transition  probabilities  from  both  the  three-dimensional  and  collinear  model 

are  compared  in  figure  6.24.  Recall  that  the  interaction  potential  is  charac- 

terized  only  by  the  range L in  the  collinear  model.  Likewise,  probabilities 

obtained  from  the  three-dimensional  model  for zero  impact  parameter depend 

only  on  L  and  hence  are  independent  of A. The  three-dimensional  predictions 

in  figure  6.24  therefore  represent  all  values  of A and  the only difference 

between  the  two  models  shown  in  figure  6.24  is  the  collision  geometry. 

The  role  of A in  the  three-dimensional  model  is  shown  in  figure  6.25(a), 

where  the  cross-section  integrand  is  shown  as  a  function  of  the  impact  param- 

eter.  Clearly, A determines  the  variation  of  transition  probability  with 

impact  parameter  and  thus  determines  the  relation  between P(b = 0) and  the 

cross  section. In another  sense, A determines  the  equivalent  elastic  cross 

section uo (eq.  (6.46)),  undefined in  the  collinear  model. 

VR-W’ 

e 
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Figure  6.24.- A comparison  of  net  vibrational  transition  probabilities  for 
para-N2(v = 0)-He  collisions  from  the  three-dimensional  and  collinear 
models;  v’ = 1, b = 0, L = 0.02  nm.  Open  symbols  are  three-dimensional 
model  results.  Shaded  symbols  are  equivalent  probabilities  for a constant 

E%we = 0.8, thus  simulating  the  procedure  typically  applied  to  collinear 
models. 

I ae  as  defined  by  equation (6.46) but  set  equal  to  the  cross  section  at 

When  the  interaction  potential  parameters  are  fixed,  the  equivalent 

elastic  cross  section  (fig.  6.25(b))  increases  slightly  with  collision  energy. 

Any  variation  is  contradictory  to  the  assumption  made  when  converting  collinear 

probabilities  to  cross  sections  by  use of a constant  hard-sphere  cross  section, 

o0 (eq.  (6.45)). However,  as  it  turns  out,  the  increase  in u approximately 

equals  the  increasing  difference  in  P(b=O)  between  the  two  collision  models 

so that  their  respective  cross  sections  and  rate  coefficients  are  in  closer 

e 
0 

VRSV‘ 

agreement  than  figure  6.24  implies.  The  shaded  symbols  in  figure  6.24  show 
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Figure 6.25.- Parameters  affecting  the  net  vibrational  cross-section  integrand 
for  para-N2(v = 0)-He collisions, v' = 1. 

the  equivalent  position  of  the  three-dimensional  results  corresponding  to  a 

constant  inelastic  cross  section  obtained  using  the  value  of u from 

E/hwe = 0.8 (i.e., cross  sections  and  rate  coefficients  from  the  two  models 

would.  compare  graphically  as  indicated  by  the  collinear  model  curve  and  the 

e 
0 

- 

shaded  symbols). 

A further  point  illustrated  in  figure 6.24 pertains  to  the  required 

vibrational  basis  set  for  molecules  like Ne. The  collinear  model  has  been 

used  as  a  guide  to  show  that,  although  the  predominant  vibrational  transitions 

are  single-quantum  transitions  from  the  ground  stake  to v' = 

vibrational  states  participate  even  at  collision  energies  near  threshold.  The 

three-dimensional  model  behaves  similarly  and  it  was  therefore  necessary  to 

include  four  vibrational  manifolds  from  v = 0 to 3 with R = 0-60 in  each 

.I . . I 2 .  

. .  , 1, hi,gher -, I .  , <, .. r : 

, I  

before  acceptable  convergence  was  achieved.  On  the  other  hand,  a  collinear, 

first-order  perturbation  calculation  of  the  type  described  in  chapter 4 gives 

results  nearly  identical  to  the  11-state  collinear  model  over  the:energy  range 

included  in  figure 6.24. These  comparisons  suggest  that  a  first-order 

. .  
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perturbation  treatment  of  the  vibrational  motion,  in  conjunction with the 

''sudden  approximation"  describing  the  rotational  motion,  will  be  a  very  useful 

analytical  method  for  dealing  with  three-dimensional  inelastic  collisions if a 

workable  solution  of  the  resulting  integral  equation  can  be  found  (e.g.,  recall 

sec. 6.4.1). 

Another  interesting  feature  of  the  three-dimensional  calculations  is  the 

variation of transition  probabilities  with  impact  parameter. A s  shown  in 

figures 6 . 8  and  6.9,  the  net  vibrational  transition  probabilities, 

simply  decrease  monotonically  as  the  impact  parameter  becomes  larger so that 
pvR", 

b = 0 impacts  always  produce  the  greatest  probability  of  a  vibrational  tran- 

sition.  However,  the  same  is  not  true  for  all  individual  vibration-rotation 

transitions.  The  variation  of 

where  some  vibration-rotation  transitions  are  seen  to  be  more  effectively 

pvR+v' R with  b  is  shown  in  figure 6.26, 

induced  by  nonzero  impacts,  just  as  previous  classical  calculations  have 

suggested. 6 5  

STATE 1 

0 .I .2 .3 .4 .5 
b/xc 

Figure  6.26.-  Vibration-rotation  transition  probability  variations  with  impact 
parameter  for  para-N2(v=  0)-He  collisions  at E/hwe=l.l, A=1000 eV, 
L = 0.02  nm.  Collision  radius  is  xc = 0.3 nm. 

- 
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Finally,  having  established  the  applicability  of a collinear  model  for 

predicting  the  rate  of  vibrational  energy  transfer  from N p  initially  in  the 

ground  vibrational  state,  we  can  now  investigate  the  accuracy  of  the  collinear 

model  in  predicting  the  associated  vibrational  quantum  number  dependence  of 

vibrational  energy-transfer  rates.  The  results  validate  the  conclusions  of 

chapter 5. Figures  6.27  and  6.28  compare  both  collision  models  for N2 ini- 

tially  in  the v = 10 

Figure 
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vibrational  state  and  show  them  to  be  qualitatively 
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6.27.-  Comparison  of  net  vibrational  transition  probabilities  for  para- 
N v = 10)-He  collisions  from  the  three-dimensional  and  collinear  models; 
vT (= 11, b = 0, L = 0.02  nm.  Shaded  symbols  are  equivalent  probabilities 
for a constant u equal  to  the  cross  section  at  E/hwe = 0.5. e 

0 
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Figure 6.28.- Parameters  affecting  the  net  vibrational  cross-section  integrand 
for  para-N2(v = 10)-He  collisions, v' = 11. Collision  parameters  are 
A = 1000 eV, L = 0.02 nm,  xc = 0 . 3  nm. 

similar  as  in  the  ground-state  predictions.  When  the  initial  state  is  vibra- 

tionally  excited,  the  differences  in  results  are  seen  (fig. 6.27) to  be  of  sec- 

ondary  importance;  that  is,  a  larger  vibrational  basis  set  is  required  and  the 

error  of  the  collinear  mod.el  is  slightly  greater.  The  three-dimensional  model 

predictions  must  be  compared  with  the  five-state  collinear  model  (dashed  line) 

in  figure 6.27 and,  clearly,  neither  set  of  calculations  contains  a  sufficient 

number  of  vibrational  states.  Thus,  convergent  three-dimensional  calculations 

for  excited  vibrational  states  become  increasingly  impractical,  even  when  the 

effective  Hamiltonian  approximation  is  incorporated.  However,  the  variation 

in CJ with  collision  energy  again  compensates  nicely  for  the  inaccuracy  of 

the  collinear  model  as  the  solid  symbols  in  figure 6.27 indicate.  Thus,  as 

e 
0 
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II 

befo re ,   t he   co l l i nea r  model appears  to  produce an adequate   descr ipt ion  of   the 

vibrational  quantuwnumber  dependence  of  cross  sections  and rate c o e f f i c i e n t s  

fo r   mo lecu le s   l i ke  N,. . .  

6.7.3 CO-He C o l l i s i o n s  ' 

A comparison of f igures   6 .3(b)  and  6.4(b)  for CO with  f igures   6 .21 

and 6.22 f o r  N2 s u g g e s t s   t h a t   t h e   s t r u c t u r a l   p r o p e r t i e s   o f  CO a r e . v e r y  similar 

t o  N2. The i n t e n t   o f   t h i s   s e c t i o n  is the re fo re   t o   l ook   ma in ly   fo r   e f f ec t s  

introduced by the   he te ronuclear   na ture   o f  CO a s soc ia t ed   w i th   t he   add i t iona l  

coupling of even-  and  odd-parity  rotational states. Generally,  no s i g n i f i c a n t  

e f f e c t s  were found  and  the  conclusions  reached  for N2 appear   to   apply  equal ly  

well t o  CO. For  example,  figure  6.29 i l lustrates  t h e   n e t   v i b r a t i o n a l   t r a n s i -  

t ion  probabi l i ty   dependence on R. For small II, t he   va r i a t ions   o f  

are o n l y   s l i g h t l y  more  pronounced i n  CO t h a n   f o r  N,. Figure 6.30  shows t h a t  

t h e   c o l l i n e a r  model is  j u s t  as app l i cab le  and the  vibrat ional   quantuwnumber 

pVR+V' 

0 

1 

Figure 6.29.- E f f e c t   o f   i n i t i a l   r o t a t i o n a l  state on   t he .   ne t   v ib ra t iona l   t r an -  
s i t i o n   p r o b a b i l i t i e s   f o r  CO(v = 0)-He c o l l i s i o n s ,  v' = 1, a t  E/hwe = 1.08, 
b = 0, L = 0.02 nm. Basis s e t   I n c l u d e s  R = 0-60 f o r   v i b r a t i o n a l  states 
v = 0-2. 
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Figure 6.30.- Comparisons of the  net  vibrational  transition  probabilities  for 
CO-He  collisions  from  the  three-dimensional  and  collinear  models.  Collin- 
ear  basis  set  includes  states  v = 0-17.  Three-dimensional  basis  set is 
the  same  as  shown  in  figure 6.28. Collision  parameters  are b = 0, 
L = 0.02 nm. 

dependence  obtained  with  it  is  just  as  reliable.  Finally,  figure 6.31 demon- 

strates  that  the  equivalent  elastic  cross  section, u is  not  profoundly 

influenced  by  the  collision  conditions,  any  more  than  it  is  for Np. Thus,  we 

conclude  that  when  the  rotational  eigenenergies  are  closely  spaced in compari- 

e 
0, 

son  to  the  vibrational  eigenenergies  and,  hence,  no  resonant  transitions  with 

small Ak are  available,  vibrational  energy  transfer  will  appear  as  a V-T 

process  regardless  of  the  other  molecular  properties. 
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Figure  6.31.-  Parameters  affecting  the  net  vibrational  cross-section  integrand 
for  CO-He  collisions; A = 1000 eV, L = 0.02 nm, xc = 0.3 nm, v' - v = 1. 

The  primary  purpose of this  chapter  is  to  examine  the  role  of  coupled 

rotational  motion  in  a  diatomic  molecule  during  the  collisional  exchange of 

vibrational  and  translational  energy. A corollary  to  that  purpose  is  the 

identification  of  conditions  for  which  a  collinear  collision  model  will  realis- 

tically  predict  the  rate of vibrational  energy  transfer.  We  have  found  that, 

although  the  analysis of rotational  coupling  is  complex,  the  nature  of  its 

influence  on  the  energy-transfer  process  is  conceptually  simple. 

The  mechanisms  of  vibrational  energy  transfer  become  readily  apparent 

when  one  recognizes  that  the  controlling  features  of  vibration-rotation  cou- 

pling  are  the  predominance  of  coupling  between  states  with  small  differences 

in angular  momentum  (i.e.,  small A t )  and  its  interplay  with  the  resonance 

enhancement  of  transition  probabilities.  Thus,  while we deal  with  collision 

energies  that  have  many  rotational  states  occupied  in  each  vibrational  mani- 

fold,  their  occupation  occurs  primarily  through  sequential  rotational 
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transitions  of  small A2 during  the  encounter.  Likewise,  vibrational  mani- 

folds  are  connected  primarily  by  vibration-rotation  transitions  with small 

A t .  Hence,  the  predominance  of  small Ak transitions is a  common  feature  of 

all  inelastic  mechanisms  within  the  molecule.  Furthermore,  the  range  of Ak 

for  which  rotational  states  are  closely  coupled  is  independent of the  degree 

of  resonance  associated  with  a  transition  and it is  insensitive  both  to  the 

interaction  potential  parameters  and to the  inertial  properties  of  the  mole- 

cule.  Thus,  the  effective  range  of A R  (which we shall  refer  to  as Akma,, 

where 0 5 A R  ARmax) is  similar  for  all  the  diatomic  molecules  and  interac- 

tion  potentials  considered  here  and  it  is  presumably  similar  for  all  others  as 

wedl.  We  have  shown  (fig. 6 . 3 )  that,  typically, ARmx 4 to 6 .  

j With  small A R  transitions  as  a  common  characteristic,  the  different 

mechanisms  of  vibrational  energy  transfer  separate  into  three  natural  classes. 

The  molecules  belonging  to  each  class  are  identified  by  their  inertial  proper- 

ties,  as  specified  first  and  foremost  by  the  ratio  of  fundamental  vibrational 

and  rotational  frequencies,  we/Be,  and,  second,  by  the  proximity of the 

initial  rotational  state  to  a  resonant  companion.  Given  these  two  identifiers, 

we  can  then  anticipate  the  qualitative  nature  of  vibrational  energy  transfer 

for  any  diatomic  molecule  that  does  not  involve  electronic  motion  or  reactive 

atom-exchange  in  the  process. 

The  first  class  pertains  to  all  molecules  in  which  we/Be >> AR,,, 

regardless  of  the  initial  rotational  state.  Our  examples  were CO and N2. 

When  the  frequency  ratio  is  very  large,  near-resonant  vibration-rotation 

transitions  of  small A R  do  not  exist  anywhere  in  the  practical  range  of 

rotational  states  and  any  resonant  enhancement  of  large A2 transitions is 

suppressed  by  the  lack  of  coupling  between  such  states.  Consequently,  the 
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energy-transfer  process is dominated  by  nonresonant small A%  transitions  in 

which  the  energy  exchange is primarily  between  vibrational  and  translational 

modes.  The  initial-state  angular  momentum  then  has  little  influence  on  the 

rate  of  energy  transfer  and  the  process  is  described  as  a V-T mechanism.  Mole- 

cules in this  class  are  justifiably  treated  by  a  collision  model in which  the 

rotational  contribution is either  averaged  or  omitted.  We  found  the  collinear 

model  to  be  surprisingly  accurate  for  this  class  of  molecules. 

The  second  and  third  classes of energy  transfer  pertain  to  molecules  in 

wh2ch  we/Be is comparable  with A!Lmax. Our  example  was H2. Since  we/Be 

is  not  large,  near-resonant  vibration-rotation  transitions  with  small A E  are 

available.  The  proximity  of  the  initial  rotational  state  to  rotational  states 

capable  of  near-resonant  vibration-rotation  transitions  then  determines  the 

class  of  energy  transfer  in  which  the  molecule  belongs. For example,  the 

second  class  may  be  chosen  as  those  molecules  with  initial  rotational  states 

remote  enough  from  the  near-resonant  transitions  for  their  angular  momentum to 

be  different  by  an  amount  greater  than Akmax. Since  the  rate  of  energy 

transfer  through  the  near-resonant  transitions  is  rapid  but  proportional  to 

the  occupation  of  the  resonant  states,  at  least  some of the  resonant  states 

must  first  become  occupied  before  the  near-resonant  transitions  can  serve as 

an  effective  energy-transfer  path.  However,  the  restriction  to small A %  

transitions  requires  a  sequence of induced  rotational  transitions  to  first 

take  place  within  the  vibrational  manifold  containing  the  initial  state.  Such 

a  multistep  process  for  successive  small  rotational  energy  changes  during  the 

collision  is  collectively  as  inefficient  as  a  single-step  nonresonant  vibra- 

tional  transition  directly  from  the  initial  state. A s  a  result,  the  energy- 

transfer  process  will  not  favor  either  path  and  the  process  must  be  labeled 
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as  either  a V-T mechanism  in  the  extreme  case  or  as  a V-R-T mechanism  in  which 

near-resonant V-R and  nonresonant V-T transitions  compete. 

The  final  class  also  pertains  to  molecules  with we/Be e AR,,, but  with 

an  initial  state  within AR,, of a  near-resonant  vibration-rotation  transi- 

tion  with  small A R .  Near-resonant  vibration-rotation  transitions  then 

immediately  dominate  the  energy-transfer  process.  Pure V-R mechanisms of this 

type  characteristically  transfer  vibrational  energy  at  rates  far  exceeding  the 

previous  two  classes. 

Clearly,  these  latter  two  classes  involve  the  rotational  motion  of  the 

molecule  in  a  significant  manner  and  a  collision  model  omitting  the  rotational 

coupling  would  not  distinguish  their  separate  characteristics. .However, we 

have  shown  that,  while  the  collinear  model  is  not  applicable  to  such  molecules, 

we  can  at  least  identify  those  molecules  for  which  it  may  be  applied  by  using 

simple  identifiers. 
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CHAPTER  7 

A REVIEW AND SOME CONSIDERATIONS  FOR FUTURE STUDY 

7.1 Review  of  the  Newfound  Aspects  of  Vibrational  Energy  Transfer 

The  primary  emphasis of this  study  has  been  directed  toward  the  factors 

that  influence  the  collisional  exchange  rates  of  vibrational  and  translational 

energy  from  excited  vibrational  states  of  diatomic  molecules.  In  particular, 

emphasis  has  centered  on  the  dependence  of  energy-transfer  rates  on  initial- 

state  vibrational  quantum  number  and  on  the  role  of  coupled  rotational  transi- 

tions  in  the  energy-transfer  process.  As  a  consequence  of  the  emphasis  on 

excited  vibrational  states,  two  fundamental  aspects  were  included  in  the  col- 

lision  model  that  are  not  often  considered,  namely,  the  anharmonicity  of  the 

molecular  vibrations  and  the  coupled  interaction of multiple  vibrational 

states.  However,  an  overriding  limitation  to  the  realism  of  the  collision 

model  is  the  uncertainty  of  the  interaction  potential  between  collision 

partners.  Thus,  the  conclusions  of  this  study  pertain  mainly  to  the  qualita- 

tive  nature of vibrational  energy  transfer  with no attempt  made to predict 

absolute  rates. 

A  point  made  early  in  this  study  was  that  the  analysis  of  a  macroscopic 

nonequilibrium  process  is  most  conveniently  carried  out  using  simple  analytic 

formulas  to  generate  the  necessary  vibrational  rate  coefficients.  One  of  the 

primary  objectives  of  this  study,  therefore,  was to evaluate  the  several  ana- 

lytic  approximations  in  popular  use,  as  they  apply  to  excited  state  transi- 

tions.  To  that  end,  a  semiclassical  description of the  collision  dynamics 

was  adopted  because,  from  previous  comparisons,  it  showed  the  greatest  promise 

as  a  theoretical  framework  leading  to  accurate  analytical  solutions.  However, 
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a  semiclassical  formulation  is  itself  an  approximate  description  of  the  colli- 

sion  dynamics.  The  first  investigative  step  was  therefore  to  determine  the 

limitations  of  the  semiclassical  approximation  when  applied  to  a  multistate 

anharmonic  oscillator  initially  in  an  excited  state. 

A comparative  evaluation  of  the  semiclassical  approximation  was  conducted 

(ch. 4 )  based  on  a  collinear  collision  model  entirely  equivalent  to  a  fully 

quantum-mechanical  formulation  appearing  in  the  literature.  Transition 

probability  predictions  were  compared  for  a  wide  range  of  anharmonic  molecular 

types,  initial  states,  and  collision  parameters.  The  comparisons  also 

included  heteronuclear  molecules.  Generally,  they  were  unlike  previous  com- 

parisons  in  the  literature  which  are  typically  confined  to  homonuclear 

harmonic  oscillators  in  the  ground  vibrational  state.  The  results  illustrated 

some  notable  and  previously  unrealized  effects of oscillator  anharmonicity  on 

the  semiclassical  approximation.  For  example,  when  computing  the  motion  of 

the  incident  particle,  the  usual  semiclassical  procedure  is  to  consider  the 

oscillator  nuclei  as  stationary  relative to the  molecular  mass  center. 

However,  the  effects  of  oscillator  compression  and  recoil  are  amplified  when 

the  oscillator  is  anharmonic,  and  the  agreement  between  semiclassical  and 

quantal  theories  is  significantly  degraded  unless  the  time-dependent  average 

positions  of  the  oscillator  nuclei  are  introduced  into  the  classical  path 

determination.  In  the  absence  of  such  coupling,  errors  in  the  semiclassical . .  . .  

approximation  are  largest  when  the  incident  particle  mass  is  comparable  to  or 

larger  than  the  mass  of  either  mclecular  nucleus.  When  the  molecule  is 

heteronuclear,  the  semiclassical  errors  can  become so large  that  anomalous 

resonances  appear  in  the  transition  probability  predictions.  The  anomalous 

resonances  are  strictly  a  consequence  of  the  anharmonic  coupling  and  do  not 
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occur  when  the  oscillator  is  harmonic.  Coupling  of  the  anharmonic  oscillator 

motion  with  the  classical  path  removes  the  resonances  and  brings  the  semi- 

classical  model  into  acceptable  agreement  with  the  exact  quantal  predictions. 

These  results  place  new  limitations  on  the  use  of  analytic  solutions  based 

on  a  semiclassical  approximation.  For  example,  the  analytic  models  do  not 

include  the  effects  of  oscillator  compression  on  the  classical  path  and  they 

should  not  be  applied  to  heteronuclear  anharmonic  oscillators  like  the 

hydrogen-halides.  For  the  same  reason,  the  analytic  models  are  also  inaccu- 

rate  when  applied  to  the  collision  of  light  homonuclear  oscillators  with  a 

heavy  incident  particle.  This  latter  result  is  contrary  to  earlier  arguments 

based  on  a  concept  that  the  semiclassical  approximation  should  be  most  accu- 

rate  for  heavy  incident  particles  because  their  wave  packets  are  more  local- 

ized  and  hence  their  motion  corresponds  more  closely  with  a  classical  descrip- 

tion.  Finally,  the  limitations of the  semiclassical  approximation  observed 

for  oscillators  initially  in  the  ground  vibrational  state  were  found  to be no 

more  restrictive  for  oscillators  in  an  excited  state.  Thus  a  semiclassical 

collision  model  should  be  adequate  for  studies of the  dependence of fransition 

rates  on  the  initial  vibrational  quantum  number. 

With  the  semiclassical  approximation  validated  and  its  limitations 

understood,  the  factors  influencing  the  dependence  of  vibrational  rate  coeffi- 

cients  on  the  initial  state  quantum  number  were  investigated  next  (ch. 5). 

Again,  a  collinear  model  was  used,  this  time  because  it  corresponds  to  the 

collision  geometry  adopted  in  all  the  analytic  solutions  to  be  tested.  Com- 

parisons  of  the  several  analytic  solutions  available  from  the  literature  with 

multistate  numerical  solutions  for  anharmonic  oscillators  in  excited  states 
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. . . . . . 

showed  that  the  most  accurate  analytical  description in applications  where 

the  accuracy  is  important is a  first-order  perturbation  treatment  of  anhar- 

monic  oscillators.  Conversely,  the  approximation in greatest  popular  use  was 

found  to  give  the  poorest  results  for  highly  excited  states.  The  influence 

of multiple-quantum  transitions  on  the  vibrational  relaxation  process  from 

highly  excited  states  was  also  examined. Two- and  three-quantum  transitions 

from  highly  excited  states  were  found  to be generally  unimportant  at  kinetic 

temperatures  less  than  the  characteristic  vibrational  temperature of the 

oscillator  (defined  as  hwe/k).  Since  vibrational  relaxation  is  usually 

superceded  by  other  kinetic  mechanisms  at  higher  temperatures,  the  usual 

assumption  that  single-quantum  transitions  prevail  is  adequate  for  the  range 

of  initial  vibrational  states  typically  considered. 

The  remaining  question  pertains  to  the  role  of  coupled  rotational  transi- 

tions  in  the  transfer  of  vibrational  energy  and  their  impact  on  the  previous 

conclusions  obtained  with  a  collinear  collision  model. A three-dimensional 

collision  model  was  developed  (ch. 6 )  that  allows  an  arbitrary  number of 

coupled  rotational  states  to  be  included  in  the  arbitrary  set  of  vibrational 

manifolds.  However,  the  collision  calculations  only  confirm  what  is  apparent 

(in  retrospect)  from  the  matrix  elements  associated  with  all  diatomic 

vibration-rotation  states:  namely,  that  the  two  controlling  factors  of  rota- 

tional  coupling  are  (a)  a  restriction  to  vibration-rotation  transitions  with 

small  changes  in  angular  momentum  and (b) the  interaction  of  that  restriction 

with  the  rate  enhancement  given  to  near-resonant  transitions.  Based  on  these 

general  features,  one  can  classify  the  mechanisms  of  vibrational  energy 

transfer  between  a  diatomic  molecule  and  a  structureless  particle  into  three 

distinct  types:  vibration-translation (V-T), vibration-rotation-translation 
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(V-R-T), and  vibration-rotation (V-R). The  molecules  belonging  to  each  type 

are  easily  identified,  first  and  foremost  by  their  ratio  of  fundamental  vibra- 

tional  and  rotational  frequencies,  ue/Be,  and,  second,  by  the  proximity  of 

their  initial  rotational  state  to  a  near-resonant  transition  invoking  a  small 

change  in  angular  momentum. A result  particularly  important  to  the  analyst  of 

macroscopic  kinetics  is  the  finding  that  molecules  belonging  to  the  class 

dominated  by  V-T  transitions  (i.e.,  those  where  ue/Be >> 1) are  accurately 

treated  by  a  collinear  collision  model  that  may  be  reduced  to  yield  analytic 

solutions. 

As a  consequence  of  this  study,  we  reach  the  broad  conclusion  that  the 

collisional  exchange  rates  of  vibrational  and  translational  energy  can  be 

accurately  estimated for diatomic  molecules  in  excited  vibrational  states 

using  a  simple  analytic  semiclassical  model  if  the  following  conditions  are 

met: 

(a) The  fundamental  vibrational  frequency of the  molecule  is  larger  than 

its  rotational  frequency  by  several  orders of magnitude. 

(b) The  molecule  is  homonuclear  or  only  slightly  heteronuclear. 

(c) The  incident  particle mass is  less  than  either  nuclear mass of  the 

molecule. 

(d) The  interaction  potential  is  accurately  modeled  in  the  region  of 

closest  approach. 

(e) A theoretical  model  is  used  that  includes  oscillator  anharmonicity 

in  its  primary  formulation.  The  first-order  perturbation  treatment  of  Morse 

oscillators  appears  to  be  the  most  satisfactory  choice. 

While  the  preceding  conditions  are  numerous,  they  only  exclude  light  or 

heteronuclear  molecules,  like He and  the  hydrogen-halides,  or  collision 
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partners  heavier  than  Argon.  Hence  the  limitations  of a well-chosen  analytic 

model  are  not  severe. 

7.2 Considerations  for  Future  Study . .  

Long  before  this study.was conceived,  many  investigators  were  aware of 

the  need  for  more  detailed  descriptions o f  the  interaction  potentials  between 

simple  diatomic  molecules  and  atoms  or  ions.  The  computational  and  experi- 

mental  determination  of  such  potentials  continues  to  be  an.activity of.fore- 

most  importance  if  quantitatively  accurate  predictions  of  vibrational  and 

rotational  energy-transfer  -rates  are  to  be  achieved.  Clearly,  many  other 

related  collision  phenomena  such  atom  exchange  reaction  rates,  ion  and  atom 

recombination  rates,  and  collisional  radiative  line  broadening  also  await  the 

same  potentials.  However,  the  theoretical  and  experimental  methods  for  deter- 

mining  interaction  potentials  are  usually  somewhat  remote from the  physics  of 

inelastic  collisions  discussed  here.  We  only  acknowledge  their  importance 

to  future  studies  of  this  type.  In  fact,  with  exact  quantum-mechanical  calcu- 

lations  of  inelastic  collisions  now  effectively a routine  numerical  exercise, 

much  of  the  new  work  on  vibrational  and  rotational  energy  transfer  is  based 

on  the  availability  of  improved  potentials. 

. .  

Nevertheless,  there  are  new  practical  applications,  particularly  those 

associated  with  lasers,  that  require  further  study  into  several  untouched 

aspects  of  vibrational  energy  transfer.  For  example,  if we limit  our  interest 

just  to  the  exchange of vibrational  and  translational  energy  and  exclude  the 

multitude  of  other  vibrational  exchange  mechanisms  such  as  vibrational  energy 

transfer  between  two  oscillators  or  the  interactions  between  vibrational  and 

electronic  states, we are  still  left  with  the  following  considerations: 
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' (a)  The  absence  of  satisfactory  experimental  determinations<of  the,  depen- 

dence  of  vibrational  rate  coefficients  on  initial-state  quantumnumber  was 

indicated  in  chapter 5. Clearly,  such  measurements  will  be  difficult,  but 

recent  improved  techniques  for  selective  excitation  of  upper  states  using 

tunable  lasers  and  multiphoton  absorption  offer  possibilities  for  new 

approaches. 

. .  

. -  , .. . .  . .  

" . . .  . . .  , ,  

. .  

(b) The  use  of  a  semiclassical  approximation  and  the  deletion  of  long- 
. .  . !  

range  forces  from  the  interaction  have  made  the  collision  models  of  this 

study  inappropriate  for  predicting  low-temperature  rate  coefficients.  Yet we 

have  shown  that  the  rate  predictions  for  transitions  from  highly  excited 

vibrational  states  are  most  sensitive  to  the  collision  parameters  at  low 

. .  

' /  

temperatures.  Several  infrared  lasers  of  great  practical  importance  operate 

at  such  conditions.  Thus,  rate  predictions  using  a  fully  quantum-mechanical 

model  and  a  more  complete  description  of  the  long-range  interactions  would be 

extremely  useful  for  the  analysis  of  such  lasers.  The  same  collision  models 

would  also  advance  the  study  of  heteronuclear  molecules  at  all  conditions 

since,  for  those  molecules,  the  semiclassical  approximation  is  generally 

inappropriate. 

(c)  Molecules  like H2 are  shown  to  transfer  vibrational  energy  with  high 

probability  from  rotational  states  near  the  continuum.  Clearly,  more  realis- 

tic  predictions  of  such  energy-transfer  rates  should  include  interactions  with 

the  continuum.  Furthermore,  a  collision  model  including  continuum  states 

would  allow  further  study  into  the  nature  of  vibration-dissociation  coupling 

. I ,  . . I :  ( ! . I  T . . ,  3 . : 1  : , *  ! v > . . . L d .  ..,, 

vibrational  states. 
. .  , 
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The foregoing  considerations  have  come  to mind during  the  course  of  this 

study as a  result  of  the  particular  topics  investigated.  However,  recent 

innovative  techniques  using  the  selective excitation of vibrational  states 

in  such  applications as laser  isotope  separation,  photoenhancement of chem- 

ical  reactions,  and  fluorescence  enhancement  have  brought  importance  to  many 

other  aspects  of  vibrational  energy  transfer  not  considered  here. 

Ames  Research  Center 
National Aeronautics and  Space Administration 

Moffett  Field,  Calif. 94035, March 4 ,  1976 
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APPENDIX A 

NOTATION 

The  following  catalog of symbols  includes  only  those  used  repeatedly. 

All symbols are defined  locally  in  the  text.  Equations  and  figures  cited 

locate  explicit  definitions  and  usage. 

a 

ab 
A 

b 

b' ,bv 

Be 

n C 

D 

E 
- 
E 

ET 

h 

i, (Y 1 

k 

k' 

km,nsk- 

Morse  intramolecular  potential  range,  equation  (3.3) 

trajectory  coefficient  for  nonzero  impacts,  equation  (6.36) 

interaction  potential  magnitude,  equation  (3.18) 

impact  parameter,  figure  6.1 

Morse  oscillator  wave-function  constants,  equation  (3.10) 

molecular  rotational  frequency  constant 

wave-function  amplitude  in  basis  state n 

Lennard-Jones  interaction  potential  well  depth,  equation (3.22) 

Morse  intramolecular  potential  well  depth,  equation  (3.3) 

relative  kinetic  energy  in a center-of-mass  reference  frame 

average  relative  kinetic  energy 

oscillator  energy  in  eigenstate v 

total  energy  of a colliding  system  in a center-of-mass  reference 

frame,  equation  (4.15) 

h/21~, where h is  the  Planck  constant 

modifiedqspherical  Bessel  function,  equation  (3.31) 

Boltzmann's  constant 

oscillator  anharmonicity  constant,  equation  (3.9) 

rate  coefficient  for  transitions  from  quantum  state rn to n 
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a,a' 

L I .. 

b Lv (Y 1 

m,m' 

m 

m i 

NV 

pVa3v' 

r 

r e 
(n) 
rw' 

angular-momentum  orbital  quantum  numbers . ' "  

interaction  potential  range  parameter,  equation.  (3.18) 

Laquerre  polynomial,  equation (C.2) ' 

angular-momentum  projection : quantum  numbers 

,. 

m' -m 

mass of  nucleous i 
1 .  

I , .  . . .  
- . >  

rotational  matrix  element  coupling  term,  equation  (6.22) 

oscillator  radial  wave-function  normalization  factor, 

equation (3.6) : i  

Legendre  polynomial  in  the  variable y , I  

transition  probability  between  states m and n 

final  transition  probability  from  state  v'R'm'  to  vRm 

net  vibration-rotation  transition  probability  averaged  over 

, .  

all  initial m states  and skmed over  all  m'  stated, " 

equation  (6.42) 
1 

net  vibrational  transition  probability  averaged  over  all 

initial m states  and  summed  over  all 11' and m' states 

in  manifold v' , equation  (6.43) 

oscillator  internuclear  separation  distance 

oscillator  equilibrium  internuclear  separation  distanee 
* i 

elementary  radial  overlap  integral,  equation  (6.19) 

oscillator  radial  wave  function  for  eigenstate  v, 

equation  (3.6) 

radial  matrix  element,  equation  (6.16) 

time  measured  from  the  instant  of  closest  approach 
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T 
- 
U 

U 

v,v' 

V,V' 

v 

X e 

z 

kinetic  temperature 

average  relative  collision  speed  in  a center-of-mass 

reference  frame 

interaction-potential  spherically  symmetric  term, 

. .  equation (6.9) 

vibrational  quantum  number 

interaction  potential  between  colliding  nuclei 

spherically  averaged  interaction  potential,  equation (6.30) 

intramolecular  potential 

time-dependent  interation matrix element  (overlap  integral) 

for states m and n 

time-independent  matrix  element  for  states v'R'm" and 

vRm,  equation (6.26) 

"ef f  ective-Hamiltonian"  matrix  element,  equation (6.55) 

separation  distance  between  colliding  nuclei,  figure 3.4 

"hard  sphere"  collision  radius 

mass-center  separation  distance  between  collision  partners, 

figure 3.4 

mass-center  separation  distance at  closest  approach 

anharmonic  second-order  frequency  coefficient,  equation (3.1) 

spherical  harmonic  function 

oscillator-internuclear  separation  parameter,  equation (3.7) 

, . .  . .  ,,:: , . - I  ... . .  

Y mlecular miss ratio,  figure 3.4 

B molecular orientation angle,  figure 3 . 4  
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Y 
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gamma  function  of  argument  y 

incomplete  gamma  function 

spherical  polar  coordinate  angles,  figure 6.1 

reduced  mass  of  the  collision p a i r  

reduced mass of  the  molecule 

Lennard-Jones  zero  potential  radius,  figure  3.3 

"hard-sphere"  constant  cross  sections,  equation ( 5 . 4 )  

equivalent  hard-sphere  cross  section  computed  from  the 

three-dimensional  collision  model,  equation  (6.47) 

total  cross  section  for  transitions  from  state  m  to n 

vibrational  relaxation  time  constant,  equation (1.1) 

mean  collision-interaction  time 

oscillator  steady-state  wave  function 

perturbed  oscillator  time-dependent  wave  function 

circular  frequency of eigenstate m 

fundamental  oscillator  frequency,  equation  (3.1) 

w -w m n  
trajectory  azimuthal  angle,  figure  6.1 
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APPENDIX B 

GENERAL FORMULATION OF THE SEMICLASSICAL  COLLISION THEORY 

The semiclassical procedure  developed  here is assembled  from  the  contents 

of   typ ica l   t ex tbooks   descr ib ing  classical and  quantum  mechanics.  For  example, 

t h e  classical equations  of  motion are d e r i v e d   f r o m   f i r s t   p r i n c i p l e s   i n  H. 

Goldstein,  CZassicaZ  Mechanics, Addison-Wesley  (1950),  chapter 3 ,  and  the 

quantum-mechanical  methods are d i s c u s s e d   i n  E. Merzbacher, Quantum Mechanics, 

John  Wiley  (1970),  chapter 18. Both  aspects  are inc luded   here   to   p rovide  a 

u n i f i e d   d e s c r i p t i o n   o f   t h e   c o m p l e t e   t h e o r y   a n d   t o   i d e n t i f y   e x p l i c i t l y   t h e  

no ta t ion   and   a s sumpt ions   a s soc ia t ed   w i th   t he   co l l i s ion  model. 

The formula t ion   to   fo l low i s  based  on a center-of-mass  reference  frame 

i n  which p, and p denote  the  reduced mass of   the   t a rge t   molecule  and t h e  

comple te   co l l i s ion   sys tem,   respec t ive ly .  The i n c i d e n t   p a r t i c l e  is l i m i t e d  

h e r e   t o  a s t r u c t u r e l e s s   p o i n t  mass whose motion is p i c t u r e d   c l a s s i c a l l y .  

The ta rge t   molecule  is capable  of  intranuclear  motion  and i t s  dynamic response 

t o  a time-dependent  disturbance  induced by t h e   i n c i d e n t   p a r t i c l e  is descr ibed 

quantum  mechanically.   The  motions  of  both  coll ision  partners are coupled 

through  an   in te rac t ion   po ten t ia l   tha t   depends   on   the  relative s e p a r a t i o n  of 

a l l  nuc le i   in   the   sys tem.   For   these   purposes ,   the   po ten t ia l  is represented 

here   on ly  by a n   a r b i t r a r y   f u n c t i o n  V(5,;) when  q spec i f i e s   t he   mo lecu la r  
-f 

coord ina te s   i n   con f igu ra t ion   space  and R l o c a t e s   t h e   i n c i d e n t   p a r t i c l e  
3 

p o s i t i o n  relative to   t he   mo lecu la r  mass cen te r .  The remaining  discussion may 

t h e n   b e   d i v i d e d   i n t o  a s e c t i o n   d e s c r i b i n g   t h e  classical mot ion   of   the   inc ident  

p a r t i c l e  and a s e c t i o n   d e t a i l i n g   t h e  quantum-mechanical  formulation  for  the 

molecular dynamics. 
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B.1 Classical Tra j ec to ry  

I n  most semiclassical c o l l i s i o n   t h e o r i e s ,   t h e  classical path is de ter -  

mined  from j u s t  a s p h e r i c a l l y  symmetric average of t h e   i n t e r a c t i o n   p o t e n t i a l  

cen tered   on   the   t a rge t  mass center .   This   approach   reduces   the   encounter   to  a 

simple two-body central-force  problem  and,  more  importantly, i t  avoids  most 

o f   t h e   d i f f i c u l t i e s   a r i s i n g   o t h e r w i s e  from a need to   de f ine   t he   mo lecu la r  

coord ina te  q, c o n t a i n e d   i n   t h e   i n t e r a c t i o n   p o t e n t i a l ,  i n  classical terms. 

The s p h e r i c a l l y  symmetric average   po ten t ia l ,  v, may be  obtained by  quantum 

mechanical ly   averaging  the  potent ia l   over  a l l  molecular   coordinates  i n  a 

manner suggested by 

i 

where  molecular states I j ) and In) may be i n i t i a l  states o r  some combina- 

t i o n   o f   i n i t i a l   a n d   f i n a l  states. I n  many cases, t h e  method  of  averaging  has 

l i t t l e  i n f l u e n c e   o n   t h e   f i n a l  results. 

Given a c e n t r a l   p o t e n t i a l ,   t h e   t r a j e c t o r y   r e m a i n s   i n  a s i n g l e   p l a n e  

descr ibed by two coord ina tes  as shown i n   f i g u r e  B . l .  The p o t e n t i a l  may then 

be  denoted as V($)  V(,) and   t he   t r a j ec to ry  i s  convenient ly   descr ibed 

by a Lagrangian  development of the  equations  of  motion. As a r e s u l t ,   t h e  

conservat ion  of   total   energy,  E, l e a d s   t o  

and the  conservat ion  of   angular  momentum, L, r e q u i r e s   t h a t  
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/c CLOSEST APPROACH 
LINE OF SYMMETRY AT 

/-\MOLECULE MASS CENTER 

Figure B.1.- Classical  path in a center-of-mass  reference  frame 
for a two-body,  central  force  interaction. 

The  initial  conditions  are  defined  by  the  initial  speed,  ui,  and  the  impact 

parameter, b. At t = -m, we  then  have E = (1/2)vu:  and L = pbui.  However, 

before  introducing  the  initial  conditions,  we  must  recognize  that  no  account 

has  been  taken  of  the  energy  or  angular  momentum  traded  inelastically  with 

the  target.  This  inconsistency  is  the  origin  of  the  lack  of  conservation  in 

a semiclassical  theory.  While,  in  principle, a further  approximation  could 

be  invented  for  keeping  the  system  conservative,  the  usual  method  has  been 

to  adopt  an  equally  approximate  approach  in  which E and L are  simply 

interpreted  as  "effective"  constants  of  the  motion  averaged  over  the  trajec- 

tory. In this  formulation, we shall  consider  the  impact  parameters b and  b' , 

shown in  figure B . l  to be identical  but  acknowledge  that u # u in a fully 

conservative  system.  We  then  define  an  average  speed, u = u(ui,uf)  and  average 

energy E = 1/2 pti2, where  the  method  of  averaging  is  determined  by  that  giving 

the  best  results.  With  these  interpretations,  the  equations  of  motion  that 

determine  the  time  dependence of the  coordinate R = R (Z,E) in  the  inter- 

action  potential  are  obtained  from  equation  (B1)  and  (B2)  as 

f i  
" 

- 

+ +  
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B.2  Quantum-Mechanical  Molecular  Motion 

The molecular  motion i s  dr iven by the  complete i n t e r a c t i o n   p o t e n t i a l ,  

+ +  
V(q,R). To emphasize  the t i m e  dependence,  however, w e  u se   t he   equ iva len t  

no ta t ion  V(4,S)  V(5,t). The Hamiltonian  describing  the  molecular  motion 

i s  then 

Jc(3,t) = Jco(d) + V(5, t )  

-+ 
where  Xo(q) i s  the   s ta t ionary-s ta te   Hami l tonian   conta in ing   the   in t ra -  

molecular   po ten t ia l  Vo accord ing   to  

Th i s   de f in i t i on  of Jc(<,t), i n  which   the   inc ident   par t ic le   mot ion  is only 

implied by t h e  time dependence of V(q , t ) ,  i s  the   essence  of t h e   s e m i c l a s s i c a l  

approximation.  Otherwise,  Jc(q,t)  would  contain a momentum ope ra to r   r e l a t ed  

t o   t h e   i n c i d e n t   p a r t i c l e .  

-f 

-f 

In   the   Schrodinger   p ic ture ,   the   equat ion  of  motion is  

For t -f t-, the   molecule  is undisturbed  and JC = KO, giv ing  a s t a t iona ry -  

state s o l u t i o n  of t h e  form 
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where  the  probability  amplitudes, c(O)  and  c(O) are  constant  in  time. 

The  first  term  in  equation (B7) represents  bound  states  of KO with  quantum 

numbers n and  satisfying 

n k 

= ' n n  

The  second  term  accounts  for  any  continuum  states  allowed  by X. with 

energy Ek and  momentum hz. While  continuum  states  may  exist, we justify 

their  neglect  by  arguing  that  they  will  never  participate  in  the  dynamics 

of the  molecule  for  the  conditions  of  interest  here.  Consequently, we shall 

always  choose  total  energies  (internal  plus  kinetic)  well  below  the  level 

where  any  continuum  states  are  energetically  accessible.  With  that 

stipulation,  the  bound-state  eigenfunctions,  provide a natural  and 

complete  basis  set  in  which  to  expand  the  solution  to  equation (B6). Thus, 

we  can  write  the  time-dependent  wave  function  as 

'n 9 

The  probability  amplitudes, cn(t), are  analogous to c(O),  but are  now  time 

dependent.  The  probability  of  occupation  in  state n at  any  time  during 

the  encounter  is <Qn I Y(:, t)> = I cn(t) I '. Since  all  that we desire  are  the 

occupation  probabilities, a description  of  the c (t) terms  provides  an 

adequate  solution  to  the  problem.  Equation (B6) may  be  transformed  into a 

n 
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w h e r e   t h e   b r a c k e t   n o t a t i o n   r e f e r s   t o  

in tegra ted   over  a l l  q space. 
+ 

To solve  equation  (B9),   the  molecule is c o n s i d e r e d   t o   b e   i n i t i a l l y   i n  a 

pure   e igens ta te  I i )  , t h u s   c r e a t i n g   t h e   i n i t i a l   c o n d i t i o n  

f o r  a l l  n.  The i n i t i a l  phase  of c,(--) i s  unimportant  and is chosen 

a r b i t r a r i l y   s i n c e  w e  are in t e re s t ed   on ly   i n   I cn ( t )  I 2. The f i n a l  state of 

the  molecule a t  t * sdo t h e n   d e t e r m i n e s   t h e   t r a n s i t i o n   p r o b a b i l i t i e s  

r e s u l t i n g  from t h e   c o l l i s i o n .  For t r a n s i t i o n s   t o  state I j )  , t h e   p r o b a b i l i t y  

is 

A t  t h i s   p o i n t ,   n o t e   t h e   r o l e   o f   v a r i o u s  terms i n   e q u a t i o n  (B9) and how 

t h e y   c o n t r i b u t e   t o   t h e   t r a n s i t i o n   p r o b a b i l i t y .  The matrix element, 

( j  IV(<,t)  In), is a coupl ing   fac tor   tha t   connec ts  states I j) and In) .  It 

con ta ins   t he   p r imary   quan ta l   p rope r t i e s   o f   t he   t r ans i t i on  and i t  in t roduces  

t h e   a p p r o p r i a t e   s e l e c t i o n   r u l e s ,   i f  any e x i s t .  However, w h i l e   s e l e c t i o n   r u l e s  

w i l l  control   individual   matr ix   e lements ,   the   coupl ing  of  more than two states 

in   the   molecular   dynamics   can   a l low  a l te rna te   rou tes   for   the   molecule   to  

reach a s e l e c t e d   f i n a l  state. Thus, e n e r g e t i c   c o l l i s i o n s   i n v o l v i n g  numerous 

in te rmedia te  states w i l l  not   a lways  display  the  select ion  propert ies   appear-  

i n g   i n  low-energy c o l l i s i o n s  where  only two states p a r t i c i p a t e   i n  a t r a n s i -  

t ion. 
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Resonance  in a transition  plays  no  direct  role  in  determining  the  matrix 

element  properties.  Thus,  the  matrix-element  properties  will  prevail  regard- 

less of  the  degree  of  resonance.  However,  resonance  will  have  an additiotzQZ 

effect on the  transition  probability  by  way of the  phase  term  in  equation(B9). 

Clearly, a resonant  transition  (in  which w j  = un) will  not  be  degraded  by 

phase  interference  during  the  collision  and  will  achieve  the  maximum  proba- 

bility  determined  by  the  matrix  element.  Conversely,  as I uj - wn I 
increases,  phase  interference  can  add  an  oscillatory  structure  to  the  final' 

transition  probability  that  varies  with  the  collisional  parameters. 

The  practical  aspects of solving  equation (B9) are  made  simpler  if  the 

time-dependent  aspect of the  matrix  elements  defined  by  equation (B10) may be 

factored  according  to 

Then  the  time-independent  elements  Vjn,  which  contain  all  the  quantum- 

mechanical  selection  properties  and  often  require  considerable  numerical  labor, 

can  be  computed  in  advance of the  time-dependent  solution.  The  function U(t) 

is  obtained  from  the  classical  trajectory  and  applies  to  the  entire  set of 

equations (B9) for  all  quantum  states. 
. I .  . .  . .  

Another  practical  aspect  in  solving  equation (B9) is  to  adopt  the 

so-called  "close-coupling"  approximation  in  which  not  all  eigenstates  in  the 

complete  set  are  included.,  Guided  by  trial  solutions,  only  those  states 

contributing  to  the  dynamics  of  selected  states of interest  are  retained i n  

the  coupled  set  of  equations (B9). Usually,  many  states  that  are  energetically 

inaccessible  from a classical  point  of  view  may  be  neglected,  although 
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experience  has shown t h a t   i n a c c e s s i b l e  states w i t h   e i g e n e n e r g i e s   c l o s e   t o  a 

state o f   i n t e r e s t   c o n t r i b u t e  t o  the   t rans ien t   dynamics   dur ing   the  c o ~ l i s i o ~  

even  though  they are unoccupied  afterward. 

F i n a l l y ,  a n e c e s s a r y   c r i t e r i o n   t h a t  w i l l  b e   s a t i s f i e d  a t  any time, i f  

the   numer ica l   so lu t ion  of equat ions (B9) proceeds   accura te ly ,  is t h e   c l o s u r e  

r e l a t i o n   c o n s e r v i n g   p r o b a b i l i t y ,   t h a t  i s ,  

Hence, equat ion ( B 1 2 )  may be  used as one test  fo r   r egu la t ing   t he   numer i ca l  

s t e p   s i z e ,   a l t h o u g h ,   i n   p r a c t i c e ,  it seldom  becomes a l i m i t i n g   f a c t o r .  

B . 3  First-Order  Perturbation  Theory 

When t h e   k i n e t i c   e n e r g y  is very low,  the   occupat ion  of  a l l  states o t h e r  

t h a n   t h e   i n i t i a l  s ta te  remain  very small. Thus, i f  li) d e n o t e s   t h e   i n i t i a l  

state, we can  assume I c i ( t )  1 1 and Icn(t) I << 1 f o r  a l l  times and a l l  

n # i. To ob ta in   t he   equ iva len t   o f  a f i r s t -o rde r   pe r tu rba t ion   t heo ry  i n  

these  c i rcumstances,  w e  must make t h e   f u r t h e r   s t i p u l a t i o n   t h a t   o n l y  two 

states in te rac t ,   wi th   one   o f  them t h e   i n i t i a l  s tate.  Th i s   sugges t s   t ha t   t he  

eigenenergy  of  the  second state i s  remote  from a l l  o t h e r s  and l ies  ad jacen t  

t o   t h e  init ial-state eigenenergy. I f ,  f o r   s i m p l i f i c a t i o n   o f   n o t a t i o n ,  w e .  

denote 

equat ion (B9) can   then   be   wr i t ten :  
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The neg lec t  of cn i n   e q u a t i o n  (B14) cons t i tu tes   the   per turba t ion   approximat ion  

and   l eads   t o  a v i o l a t i o n   o f   c l o s u r e  as given  by  equation  (B12). The set of 

equat ions (B14) and (B15) are t h e r e f o r e   n o t   e x a c t l y   e q u i v a l e n t   t o  a two-state 

descr ipt ion  using  equat ions  (B9) .  

A so lu t ion   o f   equa t ion  (B14) is 

c ( t )  = exp [-: f Vii(T)d-c i -m 1 
thus   f ix ing   the   occupat ion  I ci(t)  I = 1 f o r  a l l  t .  Equation (B16) i s  used 

t o  suggest   the   form  of   cn( t )  by w r i t i n p  

where  Icn(t)  l 2  = Ibn ( t )  1 2 .  Thus, w e  may s o l v e   f o r   b n ( t ) .   E q u a t i o n  (B15) , 

i n  terms o f   b n ( t ) ,   t a k e s  on the  convenient  form 

By d e f i n i n g  a phase  frequency rni = w - w + (VAn - V ! . ) / h ,   t h e   t r a n s i t i o n  

p r o b a b i l i t y  i s  then  obtained  in   s imple  form as 

n i 11 
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APPENDIX C 

RADIAL MATRIX  ELEMENT INTEGRAL 

The r a d i a l  matrix element Rw, (J) is expressed   in   equa t ion  (6.18) as a 

series expans ion   conta in ing   the   in tegra ls   r (n)   where ,   accord ing  t o  equa- 

t ion  (6 .19) ,  

W' 

(6.19) 

The i n t e g r a l  r 
W' 
(n) m u s t  be   eva lua ted   for  a su f f i c i en t   r ange  of n to reach 

convergence i n  (J). We the re fo re   s eek   an   ana ly t i c   so lu t ion   t o  equa- 

t i on   (6 .19 )   fo r   a rb i t r a ry  n t h a t  w i l l  a l low  rap id   ca lcu la t ions  of t h e  

numerous mat r ix   e lements   requi red   for  a t y p i c a l   b a s i s  set of v i b r a t i o n a l  

states. 

RW' 

The f i r s t   s t e p   i n   e v a l u a t i n g   e q u a t i o n   ( 6 . 1 9 )  is t o  express i t  i n  

e x p l i c i t   a l g e b r a i c  terms. To that   end,  w e  recall t h a t  (r) and 6i,(r) 

are Morse o s c i l l a t o r   r a d i a l  wave func t ions   desc r ibed   i n   chap te r  3. Morse72 

shows t h a t ,   i n   t h e   a b s e n c e   o f   r o t a t i o n a l   c e n t r i f u g a l   f o r c e s ,   t h e  wave 

funct ion  may be   wr i t ten :  

where 

z = k ' e  a ( r - re )  

bV 

Nv 

=k' - 2 ~ -  1 

= [abvr(v + l ) / r ( k '  - v)] 1 / 2  
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and v is an  integer  denoting  the  vibrational 

m e  function L>(z) is a Laguerre  polynomial 

eigenstate  quantum  number. 

defined  as73 

where 

(-1) - r(k' - V) 
m!  (v - m) ! r(k' - 2v + m) 

and T(y) is a gamma  function. By comparing  the  eigenenergies  associated 

with R (r) with  the  spectroscopic  term  expression: 
V 

E /h = W,(V + 1/2) - uexe(v + 1/2)2 
V 

Morse  shows  that  the  parameter k' is  then a measure  of  the  oscillator 

anharmonicity  and  related  to  the  spectroscopic  parameters  by 

k' = ue/uexe (C3) 

Substitution  of  the  radial  wave-function  expression,  equation (Cl), into 

equation  (6.19)  leads  to a transformed  integral  over  the  variable z 

according  to 

I .  . . ,  

where is a Kronecker  delta  and  the  new  terms  are  defined  by 
bW' 

Nwl = NvNvr /a 

- - v(k' - 2~ - 1) (k' - 2 ~ '  - l)V!V' ! 
r(k'  - V) r(k'  - v') (C5) 

and 

A = k' - 2 - (V + v') 
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;low invoking  equation ( C 2 )  and  no t ing   tha t   the   p roduct   o f  two f i n i t e  poly- 

non$als may be written as 

where 

j - 0  
J 

equat ion ( C 4 )  becomes 

Equation ( C 8 )  is an   expl ic i t   a lgebra ic   equiva len t   o f   equa t ion   (6 .19)   for  

a Morse o s c i l l a t o r ,  and the   r educed   i n t eg ra l   t o   be   so lved  is readi ly   apparent .  

Seve ra l   exac t   ana ly t i c   so lu t ions   o f   equa t ion  ( C 8 )  have  been  obtained i n  t h e  

pas t ,   bu t   on ly   for   spec i f ic   va lues   o f   n .   For   example ,  Herman and Schulerg8 

found a s o l u t i o n   f o r  n = 1 t h a t  may be   wr i t t en  as 

(1) - re r w' L 6 w' " N v v '  a L  v! (v '   r (k '  - v)  - (k' v)T(k' - v - - V' v) - 1) v- r(k'  (c9) 

where  v' L v. Heaps and  Herzberg"  extended  the  solution  to n = 2 and 

ind ica t ed  a procedure   for   ob ta in ing   so lu t ions   wi th   l a rger   n .  However, t h e  

formula t ion   for  n = 2 is extens ive   and   the   impl ied   formula t ion   for   l a rger  

n appears   imprac t ica l   for   the   requi red   ca lcu la t ion   of  numerous  n terms. 

Genera l iza t ion  of t h e   s o l u t i o n s   f o r   a r b i t r a r y  n a l so   appears   imprac t ica l .  

Hence, fu r the r   cons ide ra t ions   o f   exac t   ana ly t i c   so lu t ions   t o   equa t ton  ( C 8 )  

were abandoned.  The i t e r a t i v e  numerical procedure  of  Cashionloo was a l s o  

r e j e c t e d   f o r  similar reasons.   Instead,  w e  seek  an  approximate  analyt ic  

so lu t ion   based   on   the   observa t ion   tha t   the   in tegrand  i n  equat ion ( C 8 )  is a 
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I 

localized  .function,  ,.confined; . , I .  to a. narrow,  range  of . . :  . , z when . .  . X .is ,.large,. . , !. :. ., 

Since  the  yalue . .  .of _; X ,. is. , .  dominated  by - .  the . ,parameter , , .  k' , and  anharmonicify . ;... ".: 

is a , second-order . . .  . , feature . .  . ,  o f  all  diatomic  molecules . .  . ,.. k' , is always  large , 

compared  to  unity.  Hence  an  approximation.based ,. - .  on +.>> 1 will  be  generally 
applicable. 

... . . . . .  , 

. . .  . .  i .. . . !. . , 

. . .  . ,  . :. I. . 

The  generality  of  the  approximation  to  be  made  is  demonstrated  in  another 

sense:  by.writing,the . .  integral  in  equation  (C8)  in  the  generalized  form: 
. I .  , . . .  , .  

where, U ( Z )  is  an  arbitrary  function.  The  integration,,  of  .equation (c10). 

by  parfs  proceeds  according . .  to . .  

where 

. I  = u ( z ) u i z )  /I -fm u ( z )  dz 
0 0  

dz 

.. . 

and  the  integral  in  equation  (C12)  is  indefinite.  To  evaluate  equation  (C12), 

repetitive  integration  by  parts  leads tb the  series  solution 
. . .  

which  may  be  recognized  as  the  asymptotic  expansion  for  the  incomplete 

gamma  function73: 
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Equation (C14) is an exact r e l a t i o n ,   b u t  :it does   no t   ' s impl i fy   the   so lu t ion  'of 

e q d t i o n  (C11). We now seek an approximation  to  u (z) t h a t  is i n t e g r a b l e  in 

equat ion (C11).  The n a t u r e  of the.   approxi&tion is ' i n d i c a t e d   i n   f i g u r e  C. 1. 

Note"in f i g u r e  C. l (a )  t h a t   t h e   d e r i v a t i v e  
. .  

. .  . .  
. .  

du(z) ~ e-zza 
d i  

i8  v e r y   l o c a l i z e d   f o r   l a r g e  a. It has  maximum at z - a and a ha l f -wid th  

at a half-height   of  A d z  = m. Thus, the   range  of t h e   i n t e g r a n d   i n  

equat ion (C11) becomes  narrower as a increases .   Not ing   these   fea tures  

of   dv(z) /dz   and   the   fac t   tha t  u(-) = 0 from  equation (C14), t he   func t ion  

u(z)  approaches a s t e p   f u n c t i o n  as ske tched   i n   f i gu re   C . l (b ) .  Thus, w e  can 

approximate u(z) by in t roducing   the   Heavis ide  s t e p  funct ion:  

t u  

Figure C.l.- P r o p e r t i e s  of ' u (2) and its d e r i v a t i v e  hu(z) /dz - z e . a -2 
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and  wr i t ing  

where 

u(0)  = - r ( a  + 1 , O )  
- 

= -r(a + 1 )  

f rom  the   de f in i t i on   o f   t he  gamma function.73  Hence, w e  have ,   fo r  a >> 1, 

Subs t i t u t ing   equa t ion  (C17)  i n t o   t h e   e x p r e s s i o n   f o r  I(a) by equation ( C 1 1 )  

and  invoking  the  s tep-funct ion  propert ies   then  leads  to  

Equation (C18) i s  a general ized  approximate  solut ion of equat ion (C10) 

f o r   a r b i t r a r y  ~ ( z )  w i t h   o n l y   t h e   s t i p u l a t i o n   t h a t  a >> 1. It may b e  

appl ied   to   the   so lu t ion   of   equa t ion  (C8) f o r  X >> 1 w i t h   t h e   r e s u l t :  

From t h e   d e f i n i t i o n   o f  X given  by  equation  (C6), w e  see t h a t   t h e   r e q u i r e -  

ment, X >> 1, is  m e t  when 

Since k' is always much l a r g e r   t h a n  3,  the   accuracy   of   equa t ion  (C19) w i l l  

depend p r imar i ly   on   t he  sum v+v' and w i l l  decrease as t h e  sum inc reases .  

Correspondingly,   the  accuracy  of  equation (C19) is nearly  independent  of n 
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s i n c e  its d e r i v a t i o n  was done   fo r   an   a rb i t r a ry   func t ion  u ( z ) ,  i n   t h i s  case, 

equated  to   [2n(k ' /z) ln .  Thus, w e  can   u se   t he   exac t   so lu t ion   fo r  n = 1 

given  by  equation (C9) to   eva lua te   t he   accu racy   o f   equa t ion  ((219). 

An i n s t r u c t i v e   f i r s t   s t e p   i n   a s s e s s i n g   t h e   a c c u r a c y   o f   e q u a t i o n  (C19) 

is t o  examine i ts  va r i a t ion   w i th   k ' .  We do so most e a s i l y  by choosing  the 

s implest   and  most   f requent ly   appl ied case of v' = 1 and v = 0. The exact 

s o l u t i o n   f o r  n = 1 is then  

r:;) [exact] = -vkl - 3 1 
a L  k' - 2 

whi le   equa t ion  (C19) g ives  

r")  [approximate] = 
0 1  a L  

The relative e r r o r  is simply 

Error  = (k' - 2 ) L n t :  I - 1 

Sample e r r o r   v a l u e s  are t a b u l a t e d  below f o r  some diatomic  molecules  covering 

a broad  range  of k ' .  

Species k' aLri:) [exact] Error  

37.25  -0.1660 

co 161.22 -. 0790 

N2 

Br2 

163.23 -. 0785 

302.05 -. 0576 

0.0144 

. 00 32 

. 00 31 

.0017 

Comparisons f o r  H2 ( the   wors t  case) a t  higher  v and v' (smaller X) are 

shown i n   f i g u r e  C.2. As t h e   f i g u r e  shows,  equation (C19) is acceptably 

accura te   for   s ing le-quantum  t rans i t ions  (i.e.? v'-v = +1) i n  H2 f o r  a l l  
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A:XACT, APPROXIMATE, EQ. (C.9) EQ.  (C.19) 

.' 

I I I I I 

4 8 12 16 20 
V 

Figure  c .2 . -   Radial   in tegrals   and  their   approximation  for  H,; 
k' = 37.25, a L  = 0.509. 

i n i t i a l   e i g e n e n e r g i e s  a t  least  up t o   h a l f   t h e   d i s s o c i a t i o n   e n e r g y   o f  H, 

implied by t h e  Morse p o t e n t i a l .  For o ther   molecules   wi th   l a rger  k', a much 

l a r g e r   f r a c t i o n   o f   t h e   t o t a l  number of v i b r a t i o n a l  states w i l l  b e   t r e a t e d  

a c c u r a t e l y  by equat ion ((219). 

The f i n a l  consequences  of  using  equation (C19) t o  approximate r (n) 
W' . . , . .  - .  

are shown i n   f i g u r e  C . 3  where,   again  using H2 as the  worst  example, w e  

compare t h e   r a d i a l  matrix element (J:, computed using  equation  (C19),  with 

numerically  exact  values  obtained  from a Gauss-Laguerre  quadrature  solutionlo l - l O 3  

of  equation  (6.19).  This  comparison  then  encompasses  values  of r (n) f o r  a 

wide  range  of  n. Recall t h a t  small J values   correspond  to  small changes 

i n   a n g u l a r  momentum s i n c e  I R' -R I < J < R + R; w e  showed i n   c h a p t e r  6 thar: 

small I R'-% I con t r ibu te   mos t   to   the   energy- t ransfer   p rocess .  As f i g u r e  C. 3 
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Figure C.3.- Exact  and  approximate  radial  matrix  elements  for He; 
k' = 37.25,  aL = 0.509. 

illustrates,  equation  (C19)  is  exceptionally  accurate  for  small J where . :  

R*' (J) is  the  largest  and  most  effective.  Furthermore,  the  accuracy  is  not 

strongly  degraded  even  for  large v where  r 
W' 
(n) is  poorly  approximated. 

Finally,  in  applying  equation  (C19)  in  a  numerical  calculation with 

large k' and  increasing v+v', we find  that  the  practical  limit  to  its  use 
is not  due  to  the  error  of  the  approximation  but  rather  to  the loss of 

numerical  precision.  More  specifically, when k' is  large,  as  for CO or Np, 

the  approximation is basically  very  accurate  to v+v' < 150,  thus  including 

single-quantum  transitions  from  initial  states  to v = 75. However, the terms 

in  the  summation  of  equation (C19) alternate  in  sign and  the numerical range 
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between  the  largest  term  and  the  final  value  of  the sum can  exceed  the  largest 

number  (with  all  digits  significant)  possible  in  most  .computers  (i.e.,  as 

v+v' increases,  we  require  decreasing  differences  between  increasing  numbers). 
For  example,  using a CDC-7600  computer  with  28  digits  in  double  precision, 

meaningful  values of r (n) from  equation  (C19)  for  CO (k' = 161.22)  were 

obtained  only  up  to v < 12 before  all  significant  digits  were  lost.  The 

numerical  quadrature  solutions  were  developed  to  obtain  matrix  elements  for 

larger  v.  However,  the  orthogonality  properties of r (n) are  retained  in 

the  approximation  and  they  may  be  used  to  at  least  monitor  the  numerical 

precision  when  using  equation  (C19).  To  do so, one  simply  calculates 

V,v+l 

W' 

or  the  equivalent  surviving  terms, 

v"v' 
s=o 

Dr(X+s+l) = O  
S 

concurrently  with r 
W' 
(n) The  precision  with  which  equation  (C22)  is 

satisfied i s  then a measure of the  precision  obtained  with  equation  (C19). 
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APPENDIX D 

SPHERICAL MATRIX ELEMENT INTEGRAL 

A g e n e r a l   d e f i n i t i o n   o f   t h e   s p h e r i c a l  matrix elements is given  by 

equation  (6.15) as 

where 6 is defined by f igure   6 .1   and  PJ is a Legendre  spherical   poly- 

nomial  of  order J. I n   s e c t i o n  6.1.2.2,   the  spherical   harmonic wave func- 

t i o n s   o f  a r i g i d   r o t o r  are then  introduced  and  the matrix e lements   t ake   the  

s p e c i f i c   i n t e g r a l  form  give by equation  (6.21) as 

where  angles 8 and $ are po la r   ang le s   ( a l so   de f ined   i n   f i g .   6 .1 ) .  The 

purpose  of   this   appendix is to   der ive   an   ana ly t ic   so lu t ion   of   equa t ion   (6 .21)  

us ing   t he   p rope r t i e s  of spher ica l   harmonic   func t ions  commonly a p p l i e d   i n  

angular  momentum t h e o r i e s .  04, 

We begin by not ing  that   equat ion  (6 .21)  is sh i l a r  t o   t h e   i n t e g r a l  of 

th ree   spher ica l   harmonics   for   which   the   so lu t ion  is known t o   b e  (Edmonds, l o 4  

p. 63):  

2a, + 1) (2R2 + 1) (2R,+ 1) 

The bracket  symbols are Wigner 3-j symbols.  Equation  (6.21) may be made t o  

correspond  to   equat ion ( D l )  by converting Yz,m, ( e , $ )  t o  i t s  complex  conju- 

gate   using  the  spherical   harmonic  property  (Rose,  lo' p.  241) : 
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and by equat ing Y (6,O) t o  a new sphe r i ca l   ha rmon ic   i n  terms of 8 and (p. 
To accomplish  the latter, w e  recall the  addi t ion  theorem  (Rose, lo5 p. 60) : 

J, 0 

m 
where   t he   ang le s   i n   equa t ion  (D3)  are r e l a t e d  by 

COS 6 = COS 8 cos 0 + s i n  e l  s i n  8, - (p2) 1 2 (D4)  

However,  from f igure   6 .1 ,  6 is re la ted   to   the   po lar   angles   in   equa t ion   (6 .21)  

by 

so t h a t ,  by ass igning  

e l  = n/2 

e, = e 

the   addi t ion  theorem may be   wr i t t en  

With the   a id   o f   equa t ions  (D2) and ( D 5 ) ,  

El 

t he   i n t eg ra l   i n   equa t ion   (6 .21 )  may 

now be   cor re la ted   wi th   equat ion  ( D l ) ,  g iv ing   t he   so lu t ion ,  by inspec t ion ,  as 

Equation (D7)  is f u r t h e r   s i m p l i f i e d  by n o t i n g   t h a t   t h e  3-j symbol coupling 

the   p ro j ec t ion  states m' ,E and m is nonzero  only i f  
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Hence t h e  summation over   reduces  to  a s i n g l e  term and the   na t r ix   e l emen t  
. .  

becomes 

(D9) 
Equation (D9) is the   des i r ed   ana ly t i c   ma t r ix   e l emen t   exp res s ion ,   bu t  

it is  i n  a symbol i c   no ta t ion   t ha t   r equ i r e s   fu r the r   r educ t ion   t o   ob ta in   an  

a lgeb ra i c   equa t ion   su i t ab le   fo r   ca l cu la t ion .  An a l g e b r a i c  form w i l l  a l s o  

a l low  the   c lass ica l   t ime-dependent  terms introduced by E ( t )   t o   b e   i s o l a t e d .  

To achieve  an  algebraic  formula,  w e  f i r s t   e v a l u a t e   t h e   f u n c t i o n  

Y:$~/2,5). A comparison  of  the  Rodrigues  formula  for  an  associated  Legendre 

polynomial,  Py(x) , with   the   def in i t ion   o f   YRm(a ,  B) , shows t h a t   t h e  two are 

r e l a t e d  by  (Edmonds, l o 4  p. 24) 

Thus, w e  have 

+ 1 ( J  - iii)! ' I 2  i€i 1 'J(O) e 
-iiilE (t) 

 IT ( J  + E)! (D11) 

r ( J + i + l )  
P:( 0) = J;; cos[:(J - 2 

Equation (D12) may be  reduced  to   s impler   a lgebraic  terms by n o t i n g   t h a t  

s i n c e  J and IPI are in t ege r s ,   t he   cos ine  t e r m  has   the   p roper ty :  
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J-iii 
(-1)" f o r  J. +ii even 

0 f o r  J 5 odd 
cos [;(J - ii14 = [ ( D l 3 1  

Hence,  nonzero matrix elements are obta ined   on ly   for   va lues   o f  J 5 even. 

With t h a t   s t i p u l a t i o n ,   t h e  gamma f u n c t i o n s   i n   e q u a t i o n  (D12) are a l s o  

r educ ib le  as follows:  Define a parameter z so t h a t  

Then z = (J + m)/2 i s  always  an  integer  because J + iii is an  even  integer .  

With i n t e g e r  z ,  t he   dup l i ca t ion   fo rmula   fo r  gamma funct ions   g ives73  

o r  

so  t h a t  

r (J + ii + 1) 

Hence,  nonzero  values  of  Y:E(~/2,5) are g iven   fo r  J f m  even  by 

With equation  (D16),  the  time-dependent terms are e a s i l y   i s o l a t e d   i n   t h e   m a t r i x  

element  formula by de f in ing  a new matrix  with  constant  elements  given by 
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Again, t h e   s t i p u l a t i o n s   o n  da (J) I ml are t h a t  J kii is even  and iii = m' - m. 

Equation (D9) may then   be   wr i t t en  

t h u s   o b t a i n i n g   t h e   r e s u l t s   g i v e n  by equations  (6.22)  and  (6.23). 

Equation (D17) has  been  maintained i n  terms of the  symbolic  3-j 

c o e f f i c i e n t s   t o   s i m p l i f y   t h e   n o t a t i o n ,   b u t   t h e y  may be  evaluated by t h e  well- 

known f o r m u l a s   t o   f o l l 0 w ~ ~ ~ 9  lo5:  

The c o e f f i c i e n t  (T :) is nonzero  only  for L E E' + J + R even. With 

t h a t   s t i p u l a t i o n ,  

= (-l)L/2[(L - 2E') ! (L - 25) ! (L - 
(L + 1) ! 

(L/2) ! 
(L/2 - E')! (L/2 - J)! (L/2 - E)! 

For  even  values  of R' + J + R, w e  can   a l so   equate  

where C ( R J R ' : m  ii m') is  a Clebsch-Gordan coef f ic ien t   def ined   by   Rose , lo5  

(p. 39), with a convenient   a lgebraic   expression.  The r e s u l t   t h e n   l e a d s   t o  
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. .  

where v ranges  over a l l  integer  values  giving  nonnegative  factorial .az-gu- 

ments. Since  the indice constraints  giving  nonzero  values  of  the  vector- 

coupl ing  coeff ic ients  (3-j symbols) are 

. .  

the  sunnuation limits 

range  of u within 

G = m ' -  m 

in   equa t ion  (D20) are those  that   def ine  the  narrowest  

Mini,mum I, 2 0 , J - R + m' 

Maximum u 5 J + R' + R , 11' + m' 

Equations (D17) t o  (D20) are s u f f i c i e n t   t o   c a l c u l a t e  TR,m,am (J) for  a l l  

J, a ' ,m' R ,m combination6  satisfying  equation (D21) and 

R' + J + R even 

J Hi even 

A l l  other  matrix  elements are zero. 
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APPENDIX E 
. .  . .  - .  .. . . . .  . . .  ' .  , . 

. .  

ANALYTIC  TRAJECTORY  EQUATIONS  FOR  NONZERO  IMPACT  PARAMETER 
I .  . 

!, : . . .  . .  . .  
. I  

We  have  defined  a  trajectory  function  in  chapter 6 by  equation (6 .33)  as 
. . - I  . .  . .  . , L  , "  . . , .  .I . . . .  t . , .  . . , .  

IC. '3) ,: . 

where  the  constants,.  are  specified  by  the  'sphericdiiy  averaged  interaction' * 

- L '  ' r '  . <  . ,  

potential 
I 
I 

Then,  to  solve  the:set  of  coupled  dynamical  equations  describing  the  collision, 

U(b,t)  must  be  determined  explicitly  in  terms  of  time t. One  approach  would 

be  to  numerically  integrate  the  classical  trajectory . .  equation .. given  in  appen- 

dix B as 

but,  as we point  out  in  chapter 6 ,  there  are  considerable  advantages  provided 

by  an  approximate  analytic  description  of  U(b,t)  that  benefit  both  the 

remaining  numerical  analysis  and  future  analytic  descripclons  of  the,collision 

dynamics.  In  this  appendix,  we  therefore  develop  an  analytic  form of U(b,t) 

by  following  the  work of Hansen  and  Pearson. l o 6  

An  indication  of  the  functional  form  of  U(b,t)  is  obtained  by  noting  that 
. I . .  , 1 .  

equation  (E2),  with  the  potential  given  by  equation  (El),  may  be  solved 

exactly  for b = 0. The  result  is 
.' , * . '  

= sech (E) 2 fit 

b= 0 

where Zo denotes  the  distance  of  closest  approach.  Furthermore,  at  closest 

approach  for b = 0, all  the  initial  kinetic  energy  is  converted  to  potential 

energy so that V = E, leading  to - 
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In  view  of  equation  (E3),  the  primary  nature  of  solutions  to  equation (E2) 

for  nonzero  impact  parameters  should  be  represented  by 

- [I(b,t) - Io(b)  ]/L) = sech2[ab(b,t) E] 
where  ab(b,t)  is  a  slowly  varying  function  of  both b and t that  can  be 

approximated  by  a  low-order  expansion. 

By  solving  equation  (E2)  numerically,  we  can  obtain  the  exact  values  of 

ab(b, t) required  to  satisfy  equation  (E5).  Some  sample  results  are  tabulated 

below  for  a  representative  collision  energy  and  for  small-  and  large-impact 

parameters. 

TABLE  E1.-  EXACT  VALUES OF ab  (b, t) FOR E/Vii = 

b/L 

.995 . 01 6 
0.994  0.99 0 1.2 

ab(b,t) V/E iit/L 

8 

.38 .0004 6 

.35 ,0010 0 16 

.74 .015 6 

.70 .38 0 

Note  that  when  the  change  in  ab(b,t)  with t becomes  noticeable,  the  inter- 

action  potential  is  extremely  small.  We  can  therefore  approximate  ab(b,t) 

without  introducing  significant  error  in  the  collision  dynamics  by  assuming 

ab  (b, t) ab  (b,O) . Then,  expanding  both  sides of equation  (E5)  about t = 0, 

we  obtain,  to  first  order, 

1 - [Z(b, t) - x0(b) ] /L = 1 - (ab6t/2Ll2 - 
(E61 
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Similarly, 

Z(b,t) = Zo(b) + t(g) + -$ (?3) 
t=O at2 tro 

From  equation (E2), 

= O 
=O 

and 

Since  (aT/at)t=o = -v /L from  equation  (El),  equation  (Ed)  finally  leads  to 

Note  that Z0(b) must  still  be  computed  by  iteratively  solving  equation (E2) 

for t = 0. However, as we  show  in  figure 6 . 6 ,  Zo(b) is  closely  approximated 

by  equation  (E4)  when  the  impact  parameter is small.  Similarly,  when  the 

impact  parameter  is  large,  the  trajectory  path is nearly a straight  line  and 

xo(b) * b.  In  that  case,  equation  (E8)  becomes - 

a p , O )  = J2L/b (E91 

All  three  cases  are  compared  in  figure  E.l,  where  we  see  that a completely 

0 4 8 12 16 20 
b/L 

~ 

Figure E . 1 . -  Trajectory  coefficients  for  E/AVii = 
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analytical  approach  would  be  to  compute xo(b = 0) from  equation (E4) for 

increasing b until it gave  values of ab equal  to  those  from  equation (E9). 

Beyond  that  point,  a  better  approximation is to  assume x. a b. In  that  case, 

U(b,t) 0 according  to  equation (6.33) and  the  interaction may  be  considered 

- 

- 

negligibly  small. 
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APPENDIX F 

SYMMETRIES OF VIBRATION-ROTATION  MATRIX  ELEMENTS 

AND THEIR  COMPACT  COMPUTER  STORAGE 

Experience  with  the  collinear  collision  model  made  clear  the  facts  that: 

the  basis  set  required  for a three-dimensional  vibration-rotation  model  would 

be  large,  it  would  vary  in  size  with  the  initial  conditions,  and  it  should  be 

minimized  for  computing  economy. A basic  criterion  of  the  computational 

scheme  was  therefore to permit  an  arbitrary  basis  set  of  vibrational  and  rota- 

tional  eigenstates  to  be  specified  as  part  of  the  input  information.  Conse- 

quently,  the  calculation  requires a large  and  variable  number of time- 

independent  matrix  elements, VV,R,m,vRm. Since  the  matrix  elements  are  con- 

stant  in  time,  the  obvious  procedure  was to compute  them  in  advance of the 

dynamical  solution  and  store  them  in  the  computer  memory. 

. .  

When  specifying  the  basis  set  in  problems  of  this  nature,  the  available 

size of accessible  memory  can  be  as  severe a limitation  as  the  computing  time 

required.  In  large  time-sharing  systems,  the  operating  cost is affected  by 

both  factors,  while,  in  smaller  systems,  adequate  memory  volume is often  not 

available.  Hence  the  programmer's  task  becomes  one of minimizing  the  memory 

volume  that  must  be  allocated  to  accommodate  matrix  elements of the  largest 

basis  set of interest.  Since  the  allocation  must  usually  be  done  in  advance 

of any  input  information,  the  storage  scheme  must  also  be  optimized  in  advance. 

Each  matrix  element  is  identified  by  six  quantum  numbers  for  which  the 

simplest  storage  scheme  would  be a six-dimensional  array.  However,  advance 

memory  allocation  for  such  an  array  would  be  extremely  wasteful  because  each 
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dimension  would  have  to be set  to  the  largest value of interest.  For  example, 

suppose we choose  the  random  basis  set: 
. .  

i v  
- - i -  Ri 

1 4 3 

2 4 1 

3 4 0 

4 5 2 

where  i is an  index  identifying  the  state,  and  vi  and Ri are  the  vibra- 

tional and angular  momentum  quantum  numbers  specifying  the  state.  .If  vm,Rm 

represents  the  largest  values  to  be  considered,  then  there are vm + 1, 1, + 1 
possible  values  of v, 11 and 23, + 1  values of m. To accommodate  the 

example,  let  vm,Rm = 5,3. Then  the  array  would be dimensioned 

V(v'R'm'vRm) = V(6,4,7,6,4,7),  thus allocating  28,224  memory  elements,  while 

only  256  are  filled by the  sample  basis set  above. 

On second  thought,  a  more  efficient  storage  scheme is based  on  the  index i 

identifying  each  state  and %, the  projection  quantum  number. Two small 1-D 

(one-dimensional)  arrays, vi(i)  and  Ri(i),  may be  established  to  give  the 

v,R quantum  numbers when needed and the  matrix  elements  are  stored  in  a  square 

2-D  array, R ' m' vtm = V( j ' , j) , where j is computed  from 

i 
j = (2gk + 1) - R + mi i (F2) 

k= 1 

Such  a  matrix  element  array  for  the  example  basis  set is illustrated  schemati- 

cally  in  figure F.l. The  array  dimensions,  allocated  in  advance,  are now 

required  to be only  as  large as the  total  number of differential  equations 

that  can  be  solved  in  a  reasonable  computing  time.  Thus,  the  storage  alloca- 

tion  and  the  computing  time  limits  are  kept  compatible.  As.,an  example,  suppose 
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1 1  

Figure  F.1.- A representation  of  the  matrix  elements V v ~ ~ ~ m * v e m  correspond- 
ing  to  the  sample  basis  set,  equation (Fl).  Each  group, i  or  j,  repre- 
sents  a  pair  of  quantum  numbers,  vi  and  Ri.  The  matrix  element  is  then 
identified  by  relating V V ~ ~ ~ m ~ v ~ m  to  the  array  V(i,mi,j,mj).  The 
shaded  squares  are  locations  containing  zeros.  The  filled  circles 
denote  primary  elements,  unrelated  by  symmetry.  The  open  squares  and 
'open  circles 0 are  elements  related to the  primary  elements  by  the 
symmetry  equations (F9) and  F11).  The  open  circles  are  additional  ele- 
ments  included  in  the  index  equation,  equation  (F17),  and  stored  with  the 
primary  elements  in  memory. 

that  the  maximum  computing  time  limits  the  total  number  of  states to 16. That 

limit  would  then  encompass  the  example  basis  set  and  require  a  matrix  element 

array  with  256  elements. 

i While  the  preceding  storage  scheme is a  notable  improvement,  it  is  still 

extremely  wasteful.  Closer  examination  of  the  sample  matrix  element  array  in 

figure F:l reveals  that,  as  a  result  of  the  constraints  on  rotational  state 

coupling  given  by  equations  (6.24)  and  (6.251,  almost  half  of  the  elements  are 

zeros.  In  addition,  -approximately  three  quarters  of  the  nonzero  values  are 
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numbers  with  opposing  signs 

. symmetries  of 

but  duplicate  magnitudes,  as a consequence  of  the 

Hence,  there  is  an  obvious  opportunity  to  further 

: - reduce  the  storage  requirements  by  storing  only  the  elements  of  unique  and 

, nonzero  magnitude.  Such a scheme  requires  additional  computing  of  indices  to 

. -relate an  arbitrary  set  of  quantum  numbers,  v'R'm'vRm,  to  the  storage  indice 
containing  the  appropriate  matrix  element.  But,  for  large  basis  sets,  that 

additional  small  effort is offset  by a reduction  in  the  number of elements 

that  must  be  computed  and  by  the  savings  in  storage.  We  may  use,  as  an 

" "illustrative  example,  the  largest  basis  set  represented  in  this  study. It was 

for a heteronuclear  molecule (CO) containing  two  vibrational  manifolds  with 

rotational  states  from R = 0 to 10 in  each  one.  Thus, 242 states  were 

. included  and a V(j',j)  array  of 58,564 elements  would  have  been  required. 

However,  by  storing  only  the  unique  and  nonzero  matrix  elements,  the  storage 

I requirement  was  reduced  to 14,883 elements.  While  the  storage  requirement  was 

still  large,  the  difference  decided  between  possible  and  impossible  storage 

allocation.  The  remaining  paragraphs of this  appendix  are  therefore  devoted 

to a study  of  the  symmetry  properties of VVIR,m,vRm needed  to  select  the 

unique  elements  and a derivation of the  index  equations  for  locating  the 

matrix  elements  in a reduced  storage  scheme. 

" 

0 -  

F. 1 Symmetries  of  Vv, vRm 

The  symmetry  properties  of Vv,R,m,vRm are  revealed  by  the  terms  defin- 

ing  it.  According  to  equation 

$1 m' vRm 
- - 

R'+R 

c 

222 



where 

and  f(r,J)  is an algebraic  function  of r and J given  in  equation (6.16). 4 

We  first  note  that  the  vibrational  states  are  freely  interchangeable 

because  the  vibrational  wave  functions  are  purely  real  and  not  operated  upon , 

by  the  algebraic  function  f(r,J).  Thus,  equation  (F6)  may  be  rewritten  to 

give 

for  all  J. 

(F7) . - 

Next,  the  summation  limits  in  equation  (F3)  are  seen to be  unaffected  by 

an  interchange of R and 2 ' .  Hence,  all  the  remaining  symmetry  properties  of 

are  determined  entirely  by  the  rotational  coupling  term, A (3) 'v' R ' m' vRm  R'm'Rm' 
Furthermore,  having  generalized  the  vibrational  symmetry,  only  three  possible 

elementary  symmetry  operations  remain: (1) an  exchange  symmetry  between  rota- 
" 

I) 

tional  states  to  relate JQtmlem and ARmRlmt, (2) a  sign  reversal of m  only, (J) (J) 

and (3) simultaneous  sign  reversals  of  m  and m'. All  other  operations  would 

correspond  to  combined  applications  of  the  above.  In  the  following,  we  deal :. 

with  exchange  and  sign-reversal  symmetries  separately. 
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F.l.l  Exchange  Symmetry . .  . I ., 

The  relation  of dk,m, (J) Rm and - k k , Q , m ,  (J) is  easily  shown  in  a  general : ' 

fashion  by  starting  with  its  definition  in  symbolic  notation.  From  chapter 6 ,  

k J )  is  equivalent  to k'm' Rm 

where  the  combination  of  terms  containing  the  time-dependent  variables, 6 and 

Q, render  the  result  constant  in  time.  (Note  that  the  bracket  notation  in 
- 

eq. (F8) implies  the  integration  over  all  configuration  space.)  Again, 

the  operator  PJ(cos 6) is  algebraic  and  hence  not  operable  on  the  wave  func- 

tions.  Thus,  equation  (F8)  is  unchanged  when  rewritten  as 

But  equation (F4) shows  that  the  rotational  coupling  terms  are  always  real so 

that [Jk,,,,1* (J) = dQmQ'm' (J) leading to ARrmrRm (J) - - dQmQ (J> m, . Correspondingly, 

F. 1.2 Projection-State  Sign-Reversal  Symmetry 

As  indicated  previously,  sign  reversal  may  be  implemented  in  two  ways. 

The  first,  a  sign  reversal  of m alone  may be immediately  dismissed  as  an 

unsymmetric  operation  by  noting  that  it  would  induce  a  change  in  the  magnitude 

of 'm via  equation (F5) and  thereby  lead to different  magnitudes  for 

Jk'm'Rm and JE'm'e,-m 
(J) (J) . The  second  case  is  a  simultaneous  sign  reversal  of 
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I -  
- 

both m and m'. Only  the  sign  of E is then reversed  and  equation  (F4) 

leads  to . .  

The corresponding 3-j symbol  symmetry  is  given  by  Edmondsl O4 (p. 47) as 

but t' + J + !t (i.e., R1 + R2 + R 3  in  the  above  equation)  must  be  even  to 

obtain  nonzero  values of (x t )  in  equation (F4). Thus,  the  ratio  of 

3-j symbols  in  equation (F10) is  always  unity and we are  led  to  the  final 

result : 

With the  symmetries  given  by  equations (F9) and (Fll), one  choice of  pri- 

mary matrix elements  is  illustrated  in  figure F.l by  the  filled  circles.  In 

the  notation  of  figure F.l,  V(i,mi:j,+m ) are  included  for  each  i  and  all 
j 

"i from -Ei to  zero.  All  j  and  +m  are  included  that  fall  to  the  right 
j 

of the  diagonal, with the  exception  of  those  related  to  preceding in the 

same row by  synmetry.  All  other  matrix  elements  (indicated  by  open  spaces  and 
"j 

open circles in fig.  F.l) are  then  obtained  by  the  symmetry  relations, 

equations (F9) and  (F11) . 
F.2 Primary Matrix Element  Storage 

The remaining  task  is now to  devise  a  scheme  of  indexing  the  primary 

matrix elements so that  they may be stored and retrieved  using  the  identifier 

set (I, mi, j ,  mj) .  The  method  chosen  here is to index  them  sequentially  from 

1eft.to.right in  figure F.l, starting with the  top row and  continuing,  row  by 
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row,  toward  the  bottom.  The  primary  elements  may  then  be  stored  in a minimum 

memory  volume  by  computing  the  index P ( i , m  j,m and  locating  them  in a'l-D 

array,  ~(p).  Similarly,  the  matrix  elements  are  retrieved  during  the  dynami- 
2, j 

cal  solution  by  again  computing  P(i,m , j ,m ) and  applying  the  symmetry  equa- 
j j  

explicitly  in  terms  of  the  identifiers  to  complete  the  storage  scheme. 

Before  developing  the  index  equation,  we  first  note  that  the  formulation 

will  be  somewhat  simplified  if we slightly  relax  the  requirement  that aZZ 

matrix  elements  related  by.symmetry  be  excluded from.the primary  set.  Very 

little  redundancy  is  introduced  by  reinstating  the  few  excluded  matrix  ele- 

ments  to  the  right  of  the  diagonal  in  figure  F.l  in  rows  where -ti I mi - < 0 .  

Such  elements  are  indicated  in  figure  F.l  by  open  circles.  With  those  ele- 

ments  included,  we  compute  P(i,mi,j,m.)  by  first  defining  the  following 

component  terms : 

J 

An operator  is  required  to  be  identified  with  each  (i,mi) row and  with 

the  properties 

Then  the  total  number  of  primary  and  symmetric  nonzero  elements  in  row  (i,mi) 

is 

where I is  the  total  number of (vi,a.)  states  in the basis  set.  Similarly, 

the  number of nonzero  symmetric  elements to the  left of the  diagonal  in  row 

1 
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i- 1 

so that  the  total  number  of p r i m a r y  elements in row  (i,mi)  is 

I 

The  number of rows  preceding  row  (i,mi)  is 

so that  the  total  number of primary  elements  in  rows  preceding  row  (i,m ) is 

then 
i 

Now  choosing a specific  element  in  row  (i,mi),  the  number  of  nonzero  primary 

and  symmetric  elements  preceding  V(i,mi,j,m.)  is 
3 

while  those  symmetric  elements  to  the  left  of  the  diagonal  are  again  given  by 

equation  (F12)  but  rewritten  as 

i- 1 

The  difference  in  the  two  terms  above  is  then  the  number of primary  elements 

preceding  V(i,m  ,j,m ) in row  (i,m ), given  by 
i j  i 

i- 1 
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The  index  of  V(i,mi,j,m ) is  now a combination of terms  (F15)  and  (F16)  with 

the  result 
J 

P(i,mi,j  ,mj) = 1 + (R - Ri + m - mi)/2 + 5 (Ek + 6i,m) + n(y) N ( r y 4 )  
j j k-i  r= 1 

(F17) 

Equation  (F17)  requires  that j 2 i. The  identifiers may be exchanged  to  read 

P(j  ,mj ,iYmi) if i 1 j . Note  that  the  summations  in  equation  (F17) may also 

be  reduced  to  more  efficient  forms  for  computer  calculation. 
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